Sechster Monitoring-Bericht zur Energiewende

Die Energie der Zukunft

Berichtsjahr 2016
Sechster Monitoring-Bericht zur Energiewende

Die Energie der Zukunft

Berichtsjahr 2016
Inhalt

Zentrale Botschaften des sechsten Monitoring-Berichts

1 Einleitung

2 Ziele der Energiewende und Indikatoren für das Monitoring

- 2.1 Zielarchitektur zur Energiewende
- 2.2 Indikatoren und Bewertungsschema

3 Energiewende im europäischen und internationalen Kontext

- 3.1 Europäische Energiepolitik
- 3.2 Klimaschutz im Europäischen Emissionshandel und außerhalb
- 3.3 Internationale Energiepolitik

Teil I: Quantitative Ziele der Energiewende

4 Erneuerbare Energien

- 4.1 Anteil der erneuerbaren Energien am Bruttoendenergieverbrauch
- 4.2 Erneuerbare Energien im Stromsektor
- 4.3 Erneuerbare Energien im Wärmesektor
- 4.4 Erneuerbare Energien im Verkehrssektor
- 4.5 Erneuerbare-Energien-Gesetz

5 Energieverbrauch und Energieeffizienz

- 5.1 Primärenergieverbrauch und Primärenergieproduktivität
- 5.2 Endenergieverbrauch und Endenergieproduktivität
- 5.3 Stromverbrauch und Stromeffizienz
- 5.4 Nationaler Aktsionsplan Energieeffizienz

6 Gebäude

- 6.1 Gebäuderelevanter Energieverbrauch
- 6.2 Primärenergiebedarf
- 6.3 Sanierung und Investitionen im Gebäudesektor
- 6.4 Energieeffizienzstrategie Gebäude und Nationaler Aktsionsplan Energieeffizienz im Gebäudebereich

7 Verkehr

- 7.1 Energieverbrauch im Verkehrssektor
- 7.2 Alternative Kraftstoffe und innovative Antriebstechnologien
- 7.3 Verlagerung auf umweltfreundliche Verkehrsträger
- 7.4 Instrumentenmix im Verkehr

8 Treibhausgasemissionen

- 8.1 Gesamte Treibhausgasemissionen
- 8.2 Energiebedingte Treibhausgasemissionen
- 8.3 Treibhausgasemissionen und Wirtschaftsleistung
- 8.4 Aktionsprogramm Klimaschutz 2020 und Klimaschutzplan 2050
Teil II: Ziele und Rahmenbedingungen der Energiewende

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Kraftwerke und Versorgungssicherheit</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>9.1 Kraftwerke</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>9.2 Versorgungssicherheit</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>9.3 Ausstieg aus der Kernenergie</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>9.4 Strommarktdesign</td>
<td>111</td>
</tr>
<tr>
<td>10</td>
<td>Bezahlbare Energie und faire Wettbewerbsbedingungen</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>10.1 Letztverbraucherausgaben für Energie</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>10.2 Bezahlbare Energie für private Haushalte</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>10.3 Bezahlbare Energie für die Industrie</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>10.4 Bezahlbare Energie für eine wettbewerbsfähige Wirtschaft</td>
<td>121</td>
</tr>
<tr>
<td>11</td>
<td>Umweltverträglichkeit der Energieversorgung</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>11.1 Wasser, Boden und Luft</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>11.2 Rohstoff- und Flächennutzung</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>11.3 Natur und Landschaft</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>11.4 Gesundheitseffekte</td>
<td>130</td>
</tr>
<tr>
<td>12</td>
<td>Netzninfrastruktur</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>12.1 Ausbau der Übertragungsnetze</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>12.2 Ausbau der Stromverteilernetze</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>12.3 Netzinvestitionen und Netzentgelte</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>12.4 Stabilität und Qualität der Stromnetze</td>
<td>138</td>
</tr>
<tr>
<td>13</td>
<td>Integrierte Entwicklung des Energiesystems</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>13.1 Kopplung der Sektoren Strom, Wärme und Verkehr</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>13.2 Digitalisierung der Energiewende</td>
<td>145</td>
</tr>
<tr>
<td>14</td>
<td>Energieforschung und Innovationen</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>14.1 Forschung und Entwicklung</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>14.2 Innovative Energietechnologien</td>
<td>154</td>
</tr>
<tr>
<td>15</td>
<td>Investitionen, Wachstum und Beschäftigung</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>15.1 Investitionen</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>15.2 Wachstum</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>15.3 Beschäftigung</td>
<td>163</td>
</tr>
<tr>
<td>16</td>
<td>Maßnahmenübersicht</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Quellen- und Literaturverzeichnis</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Abkürzungsverzeichnis</td>
<td>189</td>
</tr>
</tbody>
</table>

Der Endenergieverbrauch im Verkehr entwickelte sich mit einem Anstieg um 2,9 Prozent gegenüber dem Vorjahr und um 4,2 Prozent gegenüber 2005 weiterhin gegenläufig zu den Zielen des Energiekonzepts. Es ist davon auszugehen, dass die Erreichung des 2020-Ziels (minus 10 Prozent) unter den bisherigen Rahmenbedingungen erst um das Jahr 2030 herum erwartet werden kann. Erhebliche weitere Anstrengungen sind erforderlich, um so schnell wie möglich eine Trendumkehr einzuleiten.

1 Einleitung

Der Monitoring-Prozess „Energie der Zukunft“ überprüft, inwieweit die gesteckten Ziele der Energiewende mit Blick auf eine sichere, wirtschaftliche und umweltverträgliche Energieversorgung erreicht und dazu Maßnahmen umgesetzt werden; die deutsche Energiewende ist dabei eingebettet in die europäische Energiewende mit ihren anspruchsvollen Zielen (siehe Kapitel 2 und 3). Der Monitoring-Prozess liefert die Grundlage, um bei Bedarf nachzusteuern zu können. Drei Aufgaben stehen im Mittelpunkt:

Überblick: Der Monitoring-Prozess gibt einen faktenbasierten Überblick über den Fortschritt bei der Umsetzung der Energiewende. Dazu wird die Vielzahl der verfügbarer energiestatistischen Informationen auf ausgewählte Kenngrößen (Indikatoren) verdichtet und aufbereitet.

Evaluation: Im Rahmen der jährlichen Monitoring-Berichte wird anhand des Status quo bewertet, inwieweit die Ziele aus dem Energiekonzept der Bundesregierung erreicht werden und wie die Maßnahmen wirken. Bei absehbaren Zielverfehlungen schlagen zusammenfassende Fortschrittsberichte aufgrund einer mehrjährigen Datenbasis Maßnahmen vor, um Hemmnisse zu beseitigen und die Ziele zu erreichen.

Ausblick: Der Monitoring-Prozess richtet sein Augenmerk auch auf die absehbare weitere Entwicklung wichtiger Kenngrößen. Dazu machen die Fortschrittsberichte verlässliche Trends erkennbar.

Eingebettet in den europäischen und internationalen Zusammenhang (Kapitel 3), fasst Teil I den aktuellen Stand bei der Umsetzung der quantitativen Ziele der Energiewende in folgenden Themenfeldern zusammen:

- Fortschritt beim Ausbau der erneuerbaren Energien (Kapitel 4)
- Entwicklung von Energieverbrauch und Energieeffizienz (Kapitel 5) mit dem Fokus auf die drei Handlungsfelder Strom, Wärme und Verkehr
- Energiepolitische Ziele und Maßnahmen im Gebäude- und im Verkehrsbereich (Kapitel 6) und im Verkehrsbereich (Kapitel 7)
- Entwicklung der Treibhausgasemissionen (Kapitel 8)

Teil II widmet sich weiteren Zielen und Rahmenbedingungen der Energiwende:

- Entwicklung des Kraftwerksbestands im Hinblick auf die Versorgungssicherheit, den Kernenergieausstieg sowie die Energiewendetauglichkeit (Strommarkt 2.0) (Kapitel 9)
- Bezahlbarkeit von Energie für private Haushalte und Unternehmen (Kapitel 10)
- Umweltverträglichkeit der Energieversorgung (Kapitel 11)
- Ausbau der Übertragungs- und Verteilernetze für Strom (Kapitel 12)
- Integrierte Entwicklung des Energiesystems mit Blick auf Sektorkopplung und Digitalisierung (Kapitel 13)
- Energieforschung und Innovationen (Kapitel 14)
- Zusammenhang der Energiewende mit Investitionen, Wachstum und Beschäftigung (Kapitel 15)

Am Ende des Berichts beschreibt eine tabellarische Übersicht den Umsetzungsstand der entsprechenden Maßnahmen (Kapitel 16). Ein weiteres Verzeichnis erläutert die verwendeten Abkürzungen.

Eine Kommission aus unabhängigen Energie-Experten begleitet den Monitoring-Prozess. Auf wissenschaftlicher Grundlage nimmt die Expertenkommission zu den Monitoring- und Fortschrittsberichten der Bundesregierung Stellung. Vorsitzender der Expertenkommission ist Prof. Dr. Andreas Löschel (Universität Münster). Weitere Mitglieder sind Prof. Dr. Georg Erdmann (Technische Universität Berlin), Prof. Dr. Frithjof Staiß (Zentrum für Solar- und Wasserstoffforschung) und Dr. Hans-Joachim Ziesing (AG Energiebilanzen e.V.). Die Stellungnahmen der Expertenkommission werden zusammen mit den Monitoring- und Fortschrittsberichten auf der Internetseite des Bundesministeriums für Wirtschaft und Energie veröffentlicht.

2 Ziele der Energiewende und Indikatoren für das Monitoring

Tabelle 2.1: Ziele auf europäischer und internationaler Ebene

<table>
<thead>
<tr>
<th>Europa</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einen verlässlichen europäischen und internationalen Rahmen für mehr Klimaschutz, Erneuerbare und Energieeffizienz schaffen.</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2.2: Quantitative Ziele der Energiewende und Status quo (2016)

<table>
<thead>
<tr>
<th></th>
<th>2016</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treibhausgasemissionen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treibhausgasemissionen (gegenüber 1990)</td>
<td>-27,3 %*</td>
<td>mindestens -40 %</td>
<td>mindestens -55 %</td>
<td>mindestens -70 %</td>
<td>weitgehend treibhausgas-neutral -80 % bis -95 %</td>
</tr>
<tr>
<td>Erneuerbare Energien</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil am Bruttoendenergieverbrauch</td>
<td>14,8 %</td>
<td>18 %</td>
<td>30 %</td>
<td>45 %</td>
<td>60 %</td>
</tr>
<tr>
<td>Anteil am Bruttostromverbrauch</td>
<td>31,6 %</td>
<td>mindestens 35 %**</td>
<td>mindestens 50 %</td>
<td>EEG 2017: 40 bis 45 % bis 2025**</td>
<td>mindestens 65 %</td>
</tr>
<tr>
<td>Anteil am Wärmeverbrauch</td>
<td>13,2 %</td>
<td>14 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effizienz und Verbrauch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primärenergieverbrauch (gegenüber 2008)</td>
<td>-6,5 %</td>
<td>-20 %</td>
<td></td>
<td></td>
<td>-50 %</td>
</tr>
<tr>
<td>Bruttostromverbrauch (gegenüber 2008)</td>
<td>-3,6 %</td>
<td>-10 %</td>
<td></td>
<td></td>
<td>-25 %</td>
</tr>
<tr>
<td>Primärenergiebedarf Gebäude (gegenüber 2008)</td>
<td>-13,8 %</td>
<td>-20 %</td>
<td></td>
<td></td>
<td>-80 %</td>
</tr>
<tr>
<td>Wärmebedarf Gebäude (gegenüber 2008)</td>
<td>-6,3 %</td>
<td>-20 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endenergieverbrauch Verkehr (gegenüber 2005)</td>
<td>4,2 %</td>
<td>-10 %</td>
<td></td>
<td></td>
<td>-40 %</td>
</tr>
</tbody>
</table>

Quelle: eigene Darstellung BMWi 03/2018
* vorläufiger Wert für 2016
Ziele der Energiewende und Indikatoren für das Monitoring

Die EU-Ziele werden in Kapitel 3 näher beleuchtet. So sollen nach derzeitigem Verhandlungsstand bis zum Jahr 2030 die Treibhausgasemissionen EU-weit um mindestens 40 Prozent gesenkt werden, die erneuerbaren Energien einen Anteil von mindestens 27 Prozent am Bruttoendenergieverbrauch erreichen und der europäische Primärenergieverbrauch um 30 Prozent reduziert werden (siehe Kapitel 3).

Teil I des Monitoring-Berichts untersucht die quantitativen Ziele der Energiewende. Wie Tabelle 2.2 zeigt, reichen diese bis zum Jahr 2050, zum Teil mit Zwischenschritten für die Jahre 2020, 2030 und 2040.

2.1 Zielarchitektur zur Energiewende

Die Zielarchitektur strukturiert die Einzelziele der Energiewende. Mit dem ersten Fortschrittsbericht zur Energiewende wurde eine Zielarchitektur zur Energiewende vom Kabinett beschlossen (siehe Abbildung 2.1). Diese Zielarchitektur strukturiert und priorisiert die genannten Ziele des Energiekonzepts, wobei verschiedene Zielebenen unterschieden werden:

Die politischen Ziele bilden den Rahmen für den Umbau der Energieversorgung. Sie umfassen:

- die Klimaziele, einschließlich einer Senkung der Treibhausgasemissionen um 40 Prozent bis zum Jahr 2020 und danach,
• den Ausstieg aus der Nutzung der Kernenergie zur Stromerzeugung bis zum Jahr 2022 sowie

• die Sicherstellung von Wettbewerbsfähigkeit und Versorgungssicherheit.

Die Kernziele beschreiben die zentralen Strategien des Energiekonzepts, mit denen die Energiewende vorangebracht werden soll. Dies sind der Ausbau erneuerbarer Energien und die Senkung des Primärenergieverbrauchs bzw. der Steigerung der Energieeffizienz. Beide Kernziele werden durch Steuerungsziele für die drei Handlungsfelder Strom, Wärme und Verkehr konkretisiert. Die Steuerungsziele und die zugehörigen Maßnahmen werden so aufeinander abgestimmt, dass die übergeordneten Ziele durch eine integrierte Betrachtung möglichst zuverlässig und kostengünstig erreicht werden können.

2.2 Indikatoren und Bewertungsschema

![Abbildung 2.1: Strukturierung der Ziele des Energiekonzepts](image-url)

Politische Ziele

- Klimaziele (u. a. -40 % Treibhausgasemissionen bis 2020), Kernenergieausstieg (bis 2022), Wettbewerbsfähigkeit, Versorgungssicherheit

Kernziele „Strategieebene“

- Steigerung des Anteils der erneuerbaren Energien (EE) am gesamten Energieverbrauch
- Reduktion des Primärenergieverbrauchs und Steigerung der Energieeffizienz

Maßnahmenmix

(Gesetze, Verordnungen, Förderprogramme etc.)

Steuerungsebene

- Optimierung
- Leitkriterien: Kosteneffizienz, Systemintegration

„Maßnahmenebene“

Quelle: eigene Darstellung BMWi 10/2016

Zur Methodik der Studie „Wirkung der Maßnahmen der Bundesregierung innerhalb der Zielarchitektur zum Umbau der Energieversorgung“

Um die Vergleichbarkeit der Instrumentenwirkungen zwischen der in der Zielarchitektur-Studie analysierten Untersuchungen sicherzustellen, hat die Studie einheitliche Prüfkriterien angewendet. Diese umfassen die Ausgestaltung des Instruments, den Ausweisungsmodus der Energieeinsparungen, den Wirkungszeitraum der Maßnahme, die zugrunde gelegte Referenzentwicklung und die Methodik der Fortschreibung. In Ausnahmefällen wurden eigene Wirkungsabschätzungen auf Basis einer Bottom-up-Bewertung durchgeführt.

Aufgrund unterschiedlicher Methodiken können einige Daten zu erneuerbaren Energien gegenüber anderen Veröffentlichungen leicht abweichen. Die Bundesregierung kommt mit dem vorliegenden Bericht gleichzeitig ihren Berichtspflichten nach § 63 Absatz 1 EnWG und § 98 EEG sowie zum Nationalen Aktionsplan Energieeffizienz (NAPE) und zur Energieeffizienzstrategie Gebäude (ESG) nach.

Abbildung 2.2: Indikatoren*

| Europa International | • EU-Ziele 2020/2030
• Physikalische Stromflüsse
• Emissionshandel EU-ETS
• Lastenteilung im Nicht-ETS-Bereich
• Globale Investitionen in erneuerbare Energien und Energieeffizienz
• Globale CO₂-Emissionen
• Globale installierte Leistung erneuerbare Energien |
| Erneuerbare Energien | • Anteil der erneuerbaren Energien (EE) am Bruttoendenergieverbrauch
• Anteil der EE am Bruttostromverbrauch
• Erneuerbare Stromerzeugung nach Technologien
• Bruttostromerzeugung nach Energieträgern
• Anteil der EE am Wärme- und Kälteverbrauch
• Anteil der EE im Verkehrssektor
• EEG-Umlage nach Technologiestarten
• Summe EEG-Umlage und Börsenstrompreise |
Ziele der Energiewende und Indikatoren für das Monitoring

<table>
<thead>
<tr>
<th>Effizienz und Verbrauch</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Primärenergieverbrauch</td>
</tr>
<tr>
<td>• Primär- und Endenergieproduktivität</td>
</tr>
<tr>
<td>• Bruttostromverbrauch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gebäude</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Anteil des gebäuderellevanten Endenergieverbrauchs am gesamten Energieverbrauch</td>
</tr>
<tr>
<td>• Gebäuderelevanter Endenergieverbrauch/Endenergieverbrauch Wärme</td>
</tr>
<tr>
<td>• Spezifischer Endenergieverbrauch Raumwärme</td>
</tr>
<tr>
<td>• Primärenergiebedarf der Gebäude</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verkehr</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Endenergieverbrauch im Verkehr</td>
</tr>
<tr>
<td>• Spezifischer Endenergieverbrauch Verkehr</td>
</tr>
<tr>
<td>• Bestand an mehrspurigen Kraftfahrzeugen mit Antriebsart Elektro</td>
</tr>
<tr>
<td>• Bestand an mehrspurigen Fahrzeugen mit Antriebsart Brennstoffzellen und Erdgas</td>
</tr>
<tr>
<td>• Verlagerung auf die Schiene</td>
</tr>
<tr>
<td>• Verlagerung auf den ÖPNV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treibhausgasemissionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Treibhausgasemissionen</td>
</tr>
<tr>
<td>• Treibhausgasemissionen nach Quellgruppen</td>
</tr>
<tr>
<td>• Energiebedingte CO₂-Emissionen nach Sektoren</td>
</tr>
<tr>
<td>• Vermiedene Treibhausgasemissionen durch erneuerbare Energien</td>
</tr>
<tr>
<td>• Spezifische Treibhausgasemissionen bezogen auf Bevölkerung und BIP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Versorgungssicherheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernenergieausstieg</td>
</tr>
<tr>
<td>• Installierte Leistung Stromerzeugungsanlagen</td>
</tr>
<tr>
<td>• Verteilung der Kraftwerkskapazitäten auf Bundesländer</td>
</tr>
<tr>
<td>• Kraft-Wärme-Kopplung inklusive Stromerzeugung</td>
</tr>
<tr>
<td>• Zu- und Rückbau konventioneller Erzeugungskapazitäten</td>
</tr>
<tr>
<td>• Leistung Pumpspeicherkraftwerke</td>
</tr>
<tr>
<td>• Fahrplan Kernenergieausstieg</td>
</tr>
<tr>
<td>• SAIDI-Strom</td>
</tr>
<tr>
<td>• In Bau befindliche konventionelle Kraftwerke</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bezahlbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wettbewerbsfähigkeit</td>
</tr>
<tr>
<td>• Letztverbraucherausgaben für Strom und Anteil am BIP</td>
</tr>
<tr>
<td>• Energieausgaben privater Haushalte</td>
</tr>
<tr>
<td>• Strompreise privater Haushalte</td>
</tr>
<tr>
<td>• Energiekosten der Industrie</td>
</tr>
<tr>
<td>• Öl- und Gaspreise</td>
</tr>
<tr>
<td>• Börsenstrompreise</td>
</tr>
<tr>
<td>• Strompreise nicht begünstigter Industrieanlagen</td>
</tr>
<tr>
<td>• Gesamtwirtschaftliche Energieausgaben</td>
</tr>
<tr>
<td>• Energiepreise im internationalen Vergleich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umweltverträglichkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Umweltbezogenes Monitoring der Energiewende anhand eines geeigneten Indikatorensatzes (wird entwickelt)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Netzinfrastruktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• EnLAG- und Bundesbedarfsplan-Projekte</td>
</tr>
<tr>
<td>• Netzinvestitionen</td>
</tr>
<tr>
<td>• Netzentgelte</td>
</tr>
<tr>
<td>• Kosten für Systemdienstleistungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sektorkopplung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digitalisierung</td>
</tr>
<tr>
<td>• Anzahl und Stromverbrauch Wärmepumpen</td>
</tr>
<tr>
<td>• Anzahl und Stromverbrauch Elektromobilität</td>
</tr>
<tr>
<td>• Fernsteuerbarkeit und Fernmessbarkeit von EE-Anlagen</td>
</tr>
<tr>
<td>• Smart Meter in privaten Haushalten</td>
</tr>
<tr>
<td>• Smart Meter in der Industrie</td>
</tr>
<tr>
<td>• Digitalisierung der Energiewende und Energiewirtschaft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energieforschung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovation</td>
</tr>
<tr>
<td>• F&E-Ausgaben der Industrie</td>
</tr>
<tr>
<td>• Forschungsausgaben des Bundes im Energieforschungsprogramm</td>
</tr>
<tr>
<td>• Projektfinanzierungen aus EU-Mitteln</td>
</tr>
<tr>
<td>• Patente</td>
</tr>
<tr>
<td>• Marktverbreitung innovativer Technologien im Energieverbrauch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investitionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wachstum</td>
</tr>
<tr>
<td>Beschäftigung</td>
</tr>
<tr>
<td>• Investitionen in erneuerbare Energien und Energieeffizienz</td>
</tr>
<tr>
<td>• Investitionen in Netze und Elektrizitätsversorgung</td>
</tr>
<tr>
<td>• Durch den Einsatz von erneuerbaren Energien eingesparte Primärenergie träger</td>
</tr>
<tr>
<td>• Beschäftigte im Bereich erneuerbarer Energien</td>
</tr>
<tr>
<td>• Beschäftigte in der Energiewirtschaft</td>
</tr>
</tbody>
</table>

Quelle: eigene Darstellung BMWi 03/2018

Neu gegenüber dem fünften Monitoring-Bericht ist das Indikatorenfeld zum neu aufgenommenen Kapitel 11 „Umweltverträglichkeit der Energieversorgung“
3 Energiewende im europäischen und internationalen Kontext

Wo stehen wir?

Abgesehen vom Anteil der erneuerbaren Energien muss Deutschland sich insbesondere bei der Reduktion der Treibhausgasemissionen sowie des Primär- und Endenergieverbrauchs anstrengen, um seine Verpflichtungen im Rahmen der 2020-Ziele für die einzelnen EU-Mitgliedstaaten einzuhalten.

Der Ausbau der Erneuerbaren und die Verbesserung der Energieeffizienz schreiten weltweit voran, und das Interesse an internationaler Kooperation mit Deutschland steigt weiter an.

Was ist neu?

Durch effektivere Preissignale soll die Funktionsfähigkeit des ETS weiter gestärkt werden. Die ETS-Reform, die im April 2017 in Kraft getreten ist, setzt die Verknappung des Angebots an Zertifikaten in ein ausgewogenes Verhältnis zur internationalen Wettbewerbsfähigkeit der europäischen Industrie.

Im Sinne der europäischen Dimension der Energiewende ermöglicht die Grenzüberschreitende-Erneuerbare-Energien-Verordnung in einem begrenzten Umfang sogenannte geöffnete Ausschreibungen, bei denen auch Projekte an Standorten in anderen EU-Mitgliedstaaten den Zuschlag erhalten können. Die Bundesregierung hat diese Möglichkeit neben PV-Freiflächenanlagen auch für Windenergieanlagen an Land eingeführt.

Unter deutschem Vorsitz haben die Staats- und Regierungschefs der G20-Staaten einen G20-Aktionsplan zu Klima und Energie für Wachstum beschlossen, bei dem auch die Vorteile eines internationalen Monitoring-Prozesses anerkannt wurden.
3.1 Europäische Energiepolitik

Abbildung 3.1: EU-Fortschritt bezüglich der 20-20-20-Ziele
in Prozent

Quelle: Eurostat 02/2018 (EE- und PEV-Zahlen; PEV ohne nicht-energetischen Verbrauch); EEA 12/2017 (Emissionszahlen; ohne LULUCF, aber mit indirektem CO₂ und mit internationalem Luftverkehr); eigene Berechnungen

Der europäische Strommarkt ist Realität und trägt maßgeblich zur Versorgungssicherheit bei. Er ermöglicht mehr Wettbewerb auf den Energimärkten und befördert auf diese Weise bezahlbare Strompreise für die Verbraucher in den EU-Mitgliedstaaten. Ein gut vernetzter Strommarkt ist darüber hinaus Voraussetzung für eine kostengünstige Integration von immer mehr Energie aus erneuerbaren Quellen, die nicht gleichmäßig verfügbar sind. Im Jahr 2016 erreichte der physikalische Stromausstausch-Saldo Deutschlands mit anderen Staaten mit über 50 TWh ein neues Allzeithoch (siehe Abbildung 3.2).

Damit die Stabilität der Stromversorgung gewährleistet werden kann, ist eine intensive bi- und multilaterale Zusammenarbeit in Europa unerlässlich. Deutschland beteiligt sich deshalb weiterhin an verschiedenen Kooperationsplatt-

Folgende Ziele sollen nach aktuellem Verhandlungsstand bis 2030 auf europäischer Ebene erreicht werden:

- eine Senkung der Treibhausgasemissionen um mindestens 40 Prozent (gegenüber 1990; vom Europäischen Rat bereits im Oktober 2014 beschlossen);
- nach informeller Einigung im Trilog ein Anteil erneuerbarer Energien von mindestens 32 Prozent am Bruttoendenergieverbrauch;
- sowie nach informeller Einigung im Trilog eine Senkung des Primärenergieverbrauchs um 32,5 Prozent (gegenüber dem im Jahr 2007 für das Jahr 2030 prognostizierten Energierisiko).

Daneben wird beim Strom eine Verbundbildung von 15 Prozent angestrebt – d.h. in jedem Mitgliedstaat sollen so viele grenzüberschreitende Leitungen vorhanden sein, dass mindestens 15 Prozent des Stroms, den die dortigen Kraftwerke maximal produzieren könnten (erzeugten Energieverbrauch), auch über die Leitungen exportiert werden könnte. Dieses Ziel wird allerdings durch zusätzliche Schwellewerte konkretisiert, mit dem Problem adressiert, dass bei
steigendem Anteil erneuerbarer Energien die installierte Erzeugungsleistung hoch ist, auch wenn tatsächlich – mangelnd Wind oder Sonne – wenig Strom produziert wird.

Herzstück der Governance-Verordnung sind die integrierten Nationalen Energie- und Klimapläne (National Energy and Climate Plans).

Tabelle 3.1: Übersicht zu wesentlichen EU-Zielen 2020 und 2030

<table>
<thead>
<tr>
<th>Maßnahme der Energieversorgung</th>
<th>2016</th>
<th>2020-Ziele (gemäß informeller Einigung im Trilog)</th>
<th>2030-Ziele (gemäß informeller Einigung im Trilog)</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>THG-Reduktion (ggü. 1990)</td>
<td>23 Prozent</td>
<td>mind. 20 Prozent</td>
<td>mind. 40 Prozent</td>
<td>verbindlich</td>
</tr>
<tr>
<td>THG-Reduktion im ETS (ggü. 2005)</td>
<td>26 Prozent</td>
<td>21 Prozent</td>
<td>43 Prozent</td>
<td>verbindlich</td>
</tr>
<tr>
<td>THG-Reduktion im Non-ETS-Bereich (ggü. 2005)</td>
<td>13,3 Prozent</td>
<td>10 Prozent</td>
<td>30 Prozent</td>
<td>verbindlich</td>
</tr>
<tr>
<td>für EU gesamt</td>
<td>4,9 Prozent</td>
<td>14 Prozent</td>
<td>38 Prozent</td>
<td>verbindlich</td>
</tr>
<tr>
<td>für Deutschland</td>
<td>17 Prozent</td>
<td>20 Prozent</td>
<td>32 Prozent</td>
<td>verbindlich</td>
</tr>
<tr>
<td>EE-Anteil</td>
<td>14,8 Prozent</td>
<td>18 Prozent</td>
<td>keine länder- spezifischen Ziele Anstieg von 1,1 Pro- zentpunkten pro Jahr (bei Anrech- nung von Abwärme und -kälte 1,3 Pro- zentpunkte pro Jahr)</td>
<td>verbindlich</td>
</tr>
<tr>
<td>am Bruttoendenergieverbrauch auf EU-Ebene</td>
<td>13,2 Prozent</td>
<td>10 Prozent</td>
<td>14 Prozent</td>
<td>verbindlich</td>
</tr>
<tr>
<td>in Deutschland</td>
<td>7,1 Prozent (EU)</td>
<td>10 Prozent</td>
<td>14 Prozent</td>
<td>verbindlich</td>
</tr>
<tr>
<td>im Wärme-/Kältesektor</td>
<td>6,9 Prozent (Deutschland)</td>
<td>10 Prozent</td>
<td>14 Prozent</td>
<td>verbindlich</td>
</tr>
<tr>
<td>in Deutschland</td>
<td>10 Prozent Rückgang des PEV ggü. 2005</td>
<td>um 20 Prozent (entspricht 13 Pro- zent Rückgang des PEV ggü. 2005)</td>
<td>um 32,5 Prozent</td>
<td>keine Angabe</td>
</tr>
<tr>
<td>ein Prozentpunkt Verkehr</td>
<td>5,5 Prozent</td>
<td>10 Prozent</td>
<td>15 Prozent</td>
<td>indikativ</td>
</tr>
<tr>
<td>in den einzelnen EU-Mitgliedstaaten</td>
<td>10 Prozent</td>
<td>10 Prozent</td>
<td>15 Prozent</td>
<td>verbindlich</td>
</tr>
<tr>
<td>Interkonnektivität in den EU-Mitgliedstaaten</td>
<td>2017 in Deutsch- land: 9 Prozent</td>
<td>Gesamtsystem effizienter machen und Versorgungssicherheit erhöhen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stromhandel/-austausch</td>
<td>2017 in Deutsch- land: 9 Prozent</td>
<td>10 Prozent</td>
<td>15 Prozent</td>
<td>indikativ</td>
</tr>
</tbody>
</table>

Quelle: BMWi 02/2018

1 siehe Kapitel 3.2

3 ggü. der Referenzentwicklung für 2020 bzw. 2030 (gemäß Primes-2007-Modell für die EU-Kommission)

4 Konkretisierung durch zusätzliche Schwellenwerte
3 ENERGIEWENDE IM EUROPÄISCHEN UND INTERNATIONALEN KONTEXT

Zentrale Maßnahmen der europäischen Energiepolitik

- Verordnung zur Governance der Energieunion
- Novelle der Erneuerbare-Energien-Richtlinie
- Novelle der Energieeffizienz-Richtlinie
- Novelle der Gebäudeeffizienz-Richtlinie
- Initiative „Beschleunigung der Umstellung auf saubere Energie in Gebäuden“
- Überarbeitetes Energieeffizienz-Label
- Risikovorsorge-Verordnung
- Novelle der Gasversorgungssicherheits-Verordnung
- Grenzüberschreitender Netzausbau
- Mitteilung der Kommission zum Schutz der kritischen Energie und Verkehrsinfrastruktur Europas
- Mitteilung der Kommission zum Interkonnektivitätsziel für 2030
- Regionale Kooperationen
- Novelle der Grenzüberschreitende-Erneuerbare-Energien-Verordnung (GEEV)
- Strom-Engpassbewirtschaftung an der deutsch-österreichischen Grenze
- Verordnung zum Elektrizitäts-Binnenmarkt
- Richtlinie zum Elektrizitäts-Binnenmarkt
- ACER-Verordnung
- Verordnung zur Festlegung einer Leitlinie über den Systemausgleich im Elektrizitätssystem
- Novelle der Erdgasbinnenmarkt-Richtlinie
- Tallinn e-Energy Declaration
- Energiediplomatie-Aktionsplan

3.2 Klimaschutz im Europäischen Emissionshandel und außerhalb

der kostenlos zugeteilt oder sie müssen sie ersteigern; am Markt sind sie frei handelbar.

Abbildung 3.3: CO₂-Zertifikatspreis im EU-Emissionshandelssystem in Euro/t CO₂

Quelle: EEX 02/2018

3.3 Internationale Energiepolitik

Ein Beispiel für eine internationale Initiative zur Reduktion klimaschädlicher Emissionen außerhalb von Emissionshandelssystemen kommt aus der Seeschifffahrt: 173 Mitgliedstaaten der Internationalen Seeschifffahrtsorganisation haben sich jüngst in einem freiwilligen, nicht bindenden Vertrag darauf verpflichtet, bis 2050 die CO\textsubscript{2}-Emissionen ihrer Hochsee-Handelsflotte gegenüber 2008 um mehr als die Hälfte zu reduzieren. Die Seeschifffahrt ist als durchaus bedeutender Emittent für 2 bis 3 Prozent des weltweiten CO\textsubscript{2}-Ausstoßes verantwortlich. Sie emittiert jährlich mehr Kohlendioxid als Deutschland insgesamt.

werkspark umgestellt wird, so sind die EU-Staaten Weltspitze: 2016 basierten hier rund 86 Prozent aller neuen Kraftwerke auf erneuerbaren Energiequellen – im Vergleich zu 62 Prozent weltweit.

Bei der installierten Leistung war Deutschland 2016 mit über 100 GW Spitzenreiter innerhalb Europas und verbuchte etwa ein Drittel der europaweit installierten Leistung für sich. Weltweit hatten nur China, die USA und Brasilien mehr Kapazitäten für die Stromerzeugung aus erneuerbaren Energien (siehe Abbildung 3.5). Für 2017 ergibt sich ein ähnliches Bild.

Den großen Rahmen für die globale Energiewende setzt das im November 2016 in Kraft getretene Pariser Klimaübereinkommen. Es verfolgt drei wesentliche Ziele:

- die Erderwärmung auf deutlich unter 2 °C im Vergleich zum vorindustriellen Zeitalter zu begrenzen;
- die Anpassungsfähigkeit an den Klimawandel zu erhöhen und
- die weltweiten Finanzmittelflüsse mit den Klimazie- len in Einklang zu bringen.

Vor diesem Hintergrund sieht der Koalitionsvertrag zwischen CDU, CSU und SPD vor, die internationale Energiezusammenarbeit auszubauen. Dabei sollen Formate wie die G20 oder die G7 sowie internationale Energieinstitutionen (IEA, IRENA) verstärkt genutzt und weitere bilaterale Energiepartnerschaften entwickelt werden. Ziel ist, die deutsche Wirtschaft weltweit zu vernetzen, Marktpotentiale zu erschließen und die globale Energiewende voranzubringen.

Eine während der deutschen G20-Präsidentschaft von der Internationalen Energieagentur (IEA) und der IRENA vorgelegte Studie zu den Perspektiven für die Energiewende zeigt auf, dass eine weitgehende Dekarbonisierung des Energiesystems bis zum Jahr 2050 anspruchsvoll, aber technisch möglich und wirtschaftlich machbar ist (OECD/IEA und IRENA 2017).

Notwendige Mehrinvestitionen bis 2050 würden etwa 0,3 Prozent des globalen BIP betragen. Dabei müssten die Investitionen in die Energieeffizienz in allen Sektoren um das Zehnfache des heutigen Niveaus steigen. Die Investitionen in die Energieerzeugung würden nicht signifikant steigen, müssten aber massiv vor allem in erneuerbare Energien umgeleitet werden.
Teil I: Quantitative Ziele der Energiewende

Die quantitativen Ziele der Energiewende beziehen sich auf fünf Themenfelder:

Erneuerbare Energien
Energieverbrauch und Energieeffizienz
Gebäude
Verkehr
Treibhausgasemissionen
4 Erneuerbare Energien

Wo stehen wir?
Mit einem Anteil von 31,6 Prozent am Bruttostromverbrauch stammte 2016 fast jede dritte Kilowattstunde Strom aus erneuerbaren Energien. Im Jahr 2017 ist ein starker Aufwärtstrend zu verzeichnen.

Der Anteil der erneuerbaren Energien am Endenergieverbrauch für Wärme ist mit 13,2 Prozent leicht gegenüber dem Vorjahr angestiegen. Im Verkehrsbereich erreichte der Beitrag der erneuerbaren Energien am Endenergieverbrauch 5,2 Prozent – ein leichter Rückgang gegenüber dem Vorjahr mit 5,3 Prozent.

Was ist neu?

Das Mieterstromgesetz beteiligt Mieterinnen und Mieter unmittelbar an der Energiewende und setzt neue Impulse für den Ausbau der Solarstromezeugung in Deutschland.

<table>
<thead>
<tr>
<th>Erneuerbare Energien</th>
<th>2016</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil am Bruttoendenergieverbrauch</td>
<td>14,8 %</td>
<td>18 %</td>
<td>30 %</td>
<td>45 %</td>
<td>60 %</td>
</tr>
<tr>
<td>Anteil am Bruttostromverbrauch</td>
<td>31,6 %</td>
<td>mindestens 35 %</td>
<td>mindestens 50 %</td>
<td>EEG 2017: 40 bis 45 % bis 2025*</td>
<td>mindestens 65 %</td>
</tr>
<tr>
<td>Anteil am Wärmeverbrauch</td>
<td>13,2 %</td>
<td>14 %</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1 Anteil der erneuerbaren Energien am Bruttoendenergieverbrauch

Die Zielarchitektur-Studie (siehe Kapitel 2.2) kommt auf Basis der durchgeführten Analysen zu folgendem Szenario: Das Ziel, den Anteil erneuerbarer Energien am Bruttoendenergieverbrauch bis 2020 auf 18 Prozent zu erhöhen, wird danach erreicht. Wesentlicher Grund dafür ist der hohe Anteil erneuerbarer Energien im Strom- und Wärmesektor. Die Studie geht davon aus, dass sich der Anteil bis 2020 auf 18,4 Prozent beläuft (innerhalb einer Bandbreite von 17,7 bis 20,0 Prozent, siehe Abbildung 4.2). Dabei wurde die Wirkung der Maßnahmen im Rahmen der Zielarchitektur berücksichtigt.

Abbildung 4.1: Zielsteckbrief: Erneuerbare Energien und Bruttoendenergieverbrauch

Ziel 2020 Anteil erneuerbarer Energien am Bruttoendenergieverbrauch von 18 Prozent
Status 2016 14,8 Prozent

Anteil am Brutto-EEV in Prozent

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6,4</td>
<td>7,2</td>
<td>8,2</td>
<td>9,8</td>
<td>9,2</td>
<td>10,2</td>
<td>11,1</td>
<td>12,2</td>
<td>13,1</td>
<td>13,2</td>
<td>13,8</td>
<td>14,7</td>
<td>14,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ziel: 18 % bis 2020

Quelle: AGEE-Stat 02/2018

Trend

Maßnahmen Erneuerbare-Energien-Gesetz, Marktanreizprogramm, Erneuerbare-Energien-Wärmegesetz, Treibhausgasquote u.a.
4 ERNEUERBARE ENERGIEN

31

trotz großer Steigerung der installierten Leistung, nicht für einen entsprechenden Zuwachs bei der erzeugten Strommenge sorgen und erreichten einen Anteil von 31,6 Prozent (2015: 31,5 Prozent) am Bruttostromverbrauch.

Die Zielarchitektur-Studie (siehe Kapitel 2.2) kommt auf Basis der durchgeführten Analysen zu folgendem Szenario: Das Ziel, den Anteil erneuerbarer Energien am Bruttoendenergieverbrauch bis 2020 auf 18 Prozent zu erhöhen, wird danach erreicht. Wesentlicher Grund dafür ist der hohe Anteil erneuerbarer Energien im Strom- und Wärmesektor. Die Studie geht davon aus, dass sich der Anteil bis 2020 auf 18,4 Prozent beläuft (innerhalb einer Bandbreite von 17,7 bis 20,0 Prozent, siehe Abbildung 4.2). Dabei wurde die Wirkung der Maßnahmen im Rahmen der Zielarchitekturberücksichtigt.

Weitere Schritte bei der Umsetzung der Energiewende bauen zunehmend auf eine integrierte Entwicklung der Sektoren Strom, Wärme und Verkehr.

4.2 Erneuerbare Energien im Stromsektor

Mit 189,7 TWh wurde im Jahr 2016 nur geringfügig mehr Strom aus erneuerbaren Energien erzeugt als im Vorjahr (2015: 188,8 TWh). Sie konnten jedoch witterungsbedingt, trotz großer Steigerung der installierten Leistung, nicht für einen entsprechenden Zuwachs bei der erzeugten Strommenge sorgen und erreichten einen Anteil von 31,6 Prozent (2015: 31,5 Prozent) am Bruttostromverbrauch (siehe Abbil-

Die Zielarchitektur-Studie (siehe Kapitel 2.2) kommt auf Basis der durchgeführten Analysen zu folgendem Szenario: Das Ziel, den Anteil erneuerbarer Energien am Bruttostromverbrauch bis zum Jahr 2020 auf mindestens 35 Prozent zu erhöhen, wird danach übererfüllt. Die Studie geht davon aus, dass sich der Anteil bis zum Jahr 2020 auf rund 41,8 Prozent beläuft (innerhalb einer Bandbreite von 39,3 bis 44,0 Prozent, siehe Abbildung 4.4). Dabei wurde die Wirkung der Maßnahmen im Rahmen der Zielarchitektur berücksichtigt.

Im deutschen Strommix bauen die erneuerbaren Energien ihre Bedeutung insgesamt aus. Die gesamte Bruttostromerzeugung hat in Deutschland im Jahr 2016 zugenommen (siehe Abbildung 4.6). Gegenüber dem Vorjahr ist der Anteil der Stromerzeugung aus erneuerbaren Quellen an der gesamten Stromerzeugung 2016 witterungsbedingt nahezu gleich geblieben und lag mit 189,7 TWh bei 29,2 Prozent (2015: 29,1). Das heißt: Erneuerbare produzierten auch im

Abbildung 4.5: Bruttostromerzeugung aus erneuerbaren Energien in TWh

<table>
<thead>
<tr>
<th>Technologie</th>
<th>Zielvorgabe zur Steigerung der installierten Leistung nach EEG 2014 §3</th>
<th>Tatsächliche Neuinstallationen in 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windenergie an Land</td>
<td>2.500 MW pro Jahr (netto)</td>
<td>4.157 MW (netto)</td>
</tr>
<tr>
<td>Windenergie auf See</td>
<td>6.500 MW bis 2020, 15.000 MW bis 2030</td>
<td>849 MW (netto kumuliert: 4.132 MW)</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>2.500 MW pro Jahr (brutto)</td>
<td>1.492 MW (brutto)</td>
</tr>
<tr>
<td>Biomasse</td>
<td>um bis zu 100 MW pro Jahr (brutto)</td>
<td>32.4 MW (brutto)*</td>
</tr>
</tbody>
</table>

Quelle: AGEE-Stat 02/2018

*Der Gesamtzuwachs der installierten Leistung von Biomasseanlagen, überwiegend aufgrund nicht-erzeugungsrelevanter Leistungsänderung zur Flexibilisierung, betrug im Jahr 2016 199 MW (netto).

Abbildung 4.6: Bruttostromerzeugung nach Energieträgern
in TWh

Abbildung 4.7: Zielsteckbrief: Anteil erneuerbarer Energien am Wärme- und Kälteverbrauch
Ziel 2020 Anteil erneuerbarer Energien am Wärme- und Kälteverbrauch von 14 Prozent
Status 2016 13,2 Prozent

Anteil am Wärmeverbrauch in Prozent

Quelle: AGEB 02/2018

Quelle: AGEE-Stat 02/2018

Trend

Maßnahmen Erneuerbare-Energien-Wärmegesetz, Marktanreizprogramm
4.3 Erneuerbare Energien im Wärmesektor

Die bedeutendste Wärmequelle der erneuerbaren Energien ist weiterhin die Biomasse. Witterungsbedingt stieg insbesondere der Holzverbrauch (einschließlich Holzpellets) privater Haushalte im vergangenen Jahr an. Insgesamt blieb die Biomasse (fest, flüssig, gasförmig sowie biogene Abfälle) so mit einem Anteil von 87,6 Prozent die wichtigste erneuerbare Energiequelle im Wärmebereich. Wärmepumpenheizungen stellten 7,6 Prozent und Solarkollektoren 4,8 Prozent der gesamten Wärme aus erneuerbaren Energien.

Die Zielarchitektur-Studie (siehe Kapitel 2.2) kommt auf Basis der durchgeführten Analysen zu folgendem Szenario: Das Ziel, den Anteil erneuerbarer Energien am Wärme- und Kälteverbrauch bis zum Jahr 2020 auf 14 Prozent zu erhöhen, wird danach erfüllt. Die Studie geht davon aus, dass sich der Anteil bis 2020 auf rund 15,0 Prozent beläuft (innerhalb einer Bandbreite von 14,5 bis 16,3 Prozent, siehe Abbildung 4.8). Dabei wurde die Wirkung der Maßnahmen im Rahmen der Zielarchitektur berücksichtigt.

Abbildung 4.8: Erhöhung des Anteils erneuerbarer Energien am Wärme- und Kälteverbrauch laut Zielarchitektur-Studie in Prozent

Quelle: Prognos, Fraunhofer ISI, DLR 2018

4.4 Erneuerbare Energien im Verkehrssektor

Der Anteil erneuerbarer Energien am gesamten Endenergieverbrauch des Verkehrs ist gesunken und beträgt im Jahr 2016 mit 33,6 TWh 5,2 Prozent (2015: 5,3 Prozent). Der Anteil der Biokraftstoffe am gesamten Endenergieverbrauch im Jahr 2016 lag bei 4,6 Prozent und der erneuerbare Anteil des Stromverbrauchs im Schienen- und Straßenverkehr bei 0,6 Prozent. Biokraftstoffe machen damit fast 90 Prozent der erneuerbaren Energien im Verkehrssektor aus.

Ursache für die rückläufige Entwicklung der erneuerbaren Anteile im Verkehr war ein Anstieg des gesamten Endenergieverbrauchs in diesem Sektor. So stieg der gesamte Endenergieverbrauch von 636 TWh im Jahr 2015 auf 650 TWh im Jahr 2016 (ohne internationalen Flugverkehr) insbesondere wegen des erhöhten Personen- wie Güterverkehrsaufkommens an (siehe Kapitel 7).

4.5 Erneuerbare-Energien-Gesetz

Erste Ergebnisse aus den wettbewerblichen Ausschreibungen für den Ausbau von Windenergie und PV nach den EEG-Novellen 2014 und 2017 bestätigen die Reformen als wichtige Schritte auf dem Weg zu einer erfolgreichen Energiewende. Die Ausschreibungen haben zu deutlich sinkenden Förderkosten geführt:

Windenergie an Land: Im Mai 2017 wurden die ersten Ausschreibungen für Windenergieanlagen an Land nach den neuen Regelungen des EEG 2017 gestartet. Analog zu Ausschreibungen bei PV sind die drei Ausschreibungen bei Wind an Land im Jahr 2017 geprägt von einem hohen Wettbewerbsniveau und sinkenden Förderhöhen. So sank der durchschnittliche mengengewichtete Zu-

Tabelle 4.2: Ergebnisse der ersten Ausschreibung für Solaranlagen nach dem EEG 2017

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der eingegangenen Gebote</td>
<td>97</td>
<td>133</td>
<td>110</td>
<td>79</td>
</tr>
<tr>
<td>Mit Gebotsvolumen</td>
<td>488 MW</td>
<td>646 MW</td>
<td>754 MW</td>
<td>546 MW</td>
</tr>
<tr>
<td>Ausgeschlossene Gebote</td>
<td>9</td>
<td>17</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Niedrigster Gebotswert</td>
<td>6,00 ct/kWh</td>
<td>5,34 ct/kWh</td>
<td>4,29 ct/kWh</td>
<td>3,86 ct/kWh</td>
</tr>
<tr>
<td>Höchster Gebotswert</td>
<td>8,86 ct/kWh</td>
<td>7,47 ct/kWh</td>
<td>7,20 ct/kWh</td>
<td>5,74 ct/kWh</td>
</tr>
<tr>
<td>Anzahl der bezuschlagten Gebote</td>
<td>38</td>
<td>32</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>Bezuschlagtes Gebotsvolumen</td>
<td>200 MW</td>
<td>201 MW</td>
<td>222 MW</td>
<td>201 MW</td>
</tr>
<tr>
<td>Niedrigster Zuschlagswert</td>
<td>6,00 ct/kWh</td>
<td>5,34 ct/kWh</td>
<td>4,29 ct/kWh</td>
<td>3,86 ct/kWh</td>
</tr>
<tr>
<td>Höchster Zuschlagswert</td>
<td>7,75 ct/kWh</td>
<td>5,9 ct/kWh</td>
<td>5,06 ct/kWh</td>
<td>4,59 ct/kWh</td>
</tr>
<tr>
<td>Durchschnittlicher Zuschlagswert</td>
<td>6,58 ct/kWh</td>
<td>5,66 ct/kWh</td>
<td>4,91 ct/kWh</td>
<td>4,33 ct/kWh</td>
</tr>
</tbody>
</table>

Quelle: BNetzA

Tabelle 4.3: Ergebnisse der ersten Ausschreibung für Windenergieanlagen an Land nach dem EEG

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebotstermin</td>
<td>256</td>
<td>281</td>
<td>210</td>
<td>132</td>
<td>111</td>
</tr>
<tr>
<td>Anzahl der eingegangenen Gebote</td>
<td>2.137 MW</td>
<td>2.927 MW</td>
<td>2.591 MW</td>
<td>989 MW</td>
<td>604 MW</td>
</tr>
<tr>
<td>mit Gebotsvolumen</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Ausgeschlossene Gebote</td>
<td>3,50 ct/kWh</td>
<td>2,2 ct/kWh</td>
<td>3,82 ct/kWh</td>
<td>4,3 ct/kWh</td>
<td></td>
</tr>
<tr>
<td>Niedrigster Gebotswert</td>
<td>7,00 ct/kWh</td>
<td>6,45 ct/kWh</td>
<td>6,66 ct/kWh</td>
<td>5,28 ct/kWh</td>
<td>6,28 ct/kWh</td>
</tr>
<tr>
<td>Höchster Gebotswert</td>
<td>807 MW</td>
<td>1.013 MW</td>
<td>1.000 MW</td>
<td>709 MW</td>
<td>604 MW</td>
</tr>
<tr>
<td>Bezuschlagte Gebote</td>
<td>70</td>
<td>67</td>
<td>61</td>
<td>83</td>
<td>111</td>
</tr>
<tr>
<td>Bezuschlagtes Gebotsvolumen</td>
<td>5,25 ct/kWh</td>
<td>4,16 ct/kWh</td>
<td>2,2 ct/kWh</td>
<td>3,8 ct/kWh</td>
<td>4,3 ct/kWh</td>
</tr>
<tr>
<td>Niedrigster Zuschlagspreis</td>
<td>5,78 ct/kWh</td>
<td>4,29 ct/kWh</td>
<td>3,82 ct/kWh</td>
<td>5,28 ct/kWh</td>
<td>6,28 ct/kWh</td>
</tr>
<tr>
<td>Höchster Zuschlagswert</td>
<td>5,71 ct/kWh</td>
<td>4,28 ct/kWh</td>
<td>3,82 ct/kWh</td>
<td>4,72 ct/kWh</td>
<td>5,73 ct/kWh</td>
</tr>
</tbody>
</table>

Quelle: BNetzA
Windenergie auf See: Im Ergebnis der Anfang 2017 durchgeführten Ausschreibungsrunde wurden vier Windparks auf See mit 1.490 MW bezuschlagt. Der durchschnittliche Mittelwert der Zuschläge lag bei 0,44 ct/kWh. Drei Zuschläge wurden mit 0 ct/kWh bezuschlagt, ein Windpark mit 6 ct/kWh. Die Zuschläge beziehen sich auf Projekte in den Nordsee-Clustern 1, 3 und 7, die ab dem Jahr 2023 in Betrieb gehen. Gebote von 0 ct/kWh bedeuten, dass die Projekte ohne Förderung auskommen.

Tabelle 4.4: Ergebnisse der ersten Ausschreibung für Offshore-Windenergieanlagen nach dem WindSeeG

<table>
<thead>
<tr>
<th>Ausschreibungen 2017</th>
<th>Windenergieanlagen auf See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebotstermin</td>
<td>1. April 2017</td>
</tr>
<tr>
<td>Anzahl der bezuschlagten Gebote</td>
<td>4</td>
</tr>
<tr>
<td>Bezuschlagtes Gebotsvolumen</td>
<td>1.490 MW</td>
</tr>
<tr>
<td>Niedriger Zuschlagswert</td>
<td>0,00 ct/kWh</td>
</tr>
<tr>
<td>Höchster Zuschlagswert</td>
<td>6,00 ct/kWh</td>
</tr>
<tr>
<td>Durchschnittlicher Zuschlagswert (mengengewichtet)</td>
<td>0,44 ct/kWh</td>
</tr>
</tbody>
</table>

Quelle: BNetzA

Tabelle 4.5: Ergebnisse der ersten Ausschreibung für Biomasse nach dem EEG

<table>
<thead>
<tr>
<th>Ausschreibungen 2017</th>
<th>Biomasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebotstermin</td>
<td>1. September 2017</td>
</tr>
<tr>
<td>Anzahl der bezuschlagten Gebote</td>
<td>24</td>
</tr>
<tr>
<td>Bezuschlagtes Gebotsvolumen</td>
<td>27,55 MW (davon 77 % Bestandsanlagen > 150 kW und 22 % Neuanlagen)</td>
</tr>
<tr>
<td>Niedriger Zuschlagswert</td>
<td>9,86 ct/kWh</td>
</tr>
<tr>
<td>Höchster Zuschlagswert</td>
<td>16,9 ct/kWh</td>
</tr>
</tbody>
</table>
| Durchschnittlicher Zuschlagswert (mengengewichtet) | Neuanlagen: 14,83 ct/kWh
Bestandsanlagen ≤ 150 kW: 16,9 ct/kWh
Bestandsanlagen >150 kW: 13,88 ct/kWh |

Quelle: BNetzA
Transparenz und Beteiligung: Mieterstrom wird wirtschaftlich attraktiver.

Ziel der Mieterstromförderung ist, Mieterinnen und Mieter unmittelbar an der Energiewende zu beteiligen und weitere Anreize für den Betrieb von Solaranlagen auf Wohngebäuden zu schaffen.

Als Mieterstrom wird Strom bezeichnet, der in Solaranlagen auf dem Dach eines Wohngebäudes erzeugt und an Letztverbraucher, insbesondere Mieter, in diesem Gebäude oder in Wohngebäuden und Nebenanlagen im unmittelbaren räumlichen Zusammenhang ohne Netzdurchleitung geliefert wird. Der von den Mietern nicht verbrauchte Strom wird ins Netz der allgemeinen Versorgung eingespeist und vergütet.

Bislang rechnete sich Mieterstrom für Vermieter in der Regel dennoch nicht, unter anderem, weil in Mieterstrommodellen erhebliche Kosten für Vertrieb, Messwesen und Abrechnung entstehen. Der Mieterstromzuschlag macht den Mieterstrom künftig wirtschaftlich attraktiver.

Gleichzeitig schafft das Mieterstromgesetz die Rahmenbedingungen dafür, dass Mieter von niedrigen Strompreisen profitieren können, weil sie ihren Stromanbieter weiterhin frei wählen können (Wettbewerb).

Zentrale Maßnahmen im Bereich erneuerbare Energien in den Sektoren Strom, Wärme und Verkehr

- Erneuerbare-Energien-Gesetz 2017
- Änderungsgesetz zum EEG 2017
- Mieterstromgesetz
- Novelle des Marktanreizprogramms von 2015 (siehe Kapitel 5 und 6)
- Abgestimmtes Regelungswerk für den Wärmemarkt (siehe Kapitel 5)
- Maßnahmen Elektromobilität/Biokraftstoffe/Schienenverkehr (siehe Kapitel 7)
- Wärmepumpen-Förderung
- Niedertemperaturwärmemnetze mit Saisonalwärmespeicher

Abbildung 4.10: EEG-Umlage nach Technologiesparten

in ct/kWh

Quelle: BMWi auf Basis der Prognose der UNB gem. AusgImoNv
5 Energieverbrauch und Energieeffizienz

Wo stehen wir?

Was ist neu?

Mit der Förderstrategie „Energieeffizienz und Wärme aus erneuerbaren Energien“ strebt die Bundesregierung eine Vereinfachung und Entbürokratisierung von Förderprogrammen an.
5.1 Primärenergieverbrauch und Primärenergieproduktivität

Die Zielarchitektur-Studie (siehe Kapitel 2.2) kommt auf Basis der durchgeführten Analysen zu folgendem Szenario: Das Ziel, den Primärenergieverbrauch bis zum Jahr 2020 zu reduzieren, besteht aus den folgenden Maßnahmen:

- Nationaler Aktionsplan Energieeffizienz und weitere bestehende Energieeffizienzprogramme

Abbildung 5.1: Zielsteckbrief: Reduktion des Primärenergieverbrauchs

| Ziel 2020 | Reduktion des Primärenergieverbrauchs um 20 Prozent (ggü. 2008) |
| Status 2016 | -6,5 Prozent |

Quelle: AGEB 08/2017
ENERGIEVERBRAUCH UND ENERGIEEFFIZIENZ

Ein Maß dafür ist die Energieeffizienz. Um diese zu berechnen, wird die volkswirtschaftliche Leistung eines Landes (z. B. Bruttoinlandsprodukt oder Bruttowertschöpfung) ins Verhältnis zum Energieverbrauch gesetzt. Somit gibt die Energieproduktivität den Wert der Güter und Dienstleistungen an, die mit einer Einheit Energie erzeugt werden können.

Die Primärenergieproduktivität ist gegenüber dem Vorjahr leicht gestiegen. Im Jahr 2016 konnten gegenüber dem Vorjahr mit demselben Energieeinsatz 0,5 Prozent mehr Produkte und Dienstleistungen erzeugt werden (siehe untere Kurve in Abbildung 5.2). Bereinigt um Witterungseffekte sowie um Änderungen der Lagerbestände lag der Anstieg bei 0,8 Prozent.

Zentral ist neben dem absoluten Energieverbrauch auch, wie effizient eine Volkswirtschaft mit der Ressource Energie umgeht. Ein Maß dafür ist die Energieeffizienz. Um diese zu berechnen, wird die volkswirtschaftliche Leistung gegenüber dem Jahr 2008 um 20 Prozent zu senken, wird danach deutlich verfehlt. Die Studie geht davon aus, dass sich die Reduktion bis 2020 lediglich auf rund minus 11,4 Prozent beläuft (innerhalb einer Bandbreite von minus 10,2 bis minus 13,6 Prozent, siehe Abbildung 5.2). Dabei wurde die Wirkung der Maßnahmen im Rahmen der Zielarchitektur berücksichtigt.

Abbildung 5.2: Reduktion des Primärenergieverbrauchs laut Zielarchitektur-Studie in PJ

Quelle: Prognos, Fraunhofer ISI, DLR 2018
5.2 Endenergieverbrauch und Endenergieproduktivität

Betrachtet man die einzelnen Energieträger, so war der Anstieg des Gasverbrauchs mit 6,9 Prozent am deutlichsten. Der Verbrauch von Kraftstoffen und Fernwärme stieg jeweils um 3,0 bzw. 1,4 Prozent. Außerdem wurde 1,0 Prozent mehr Steinkohle verbraucht als noch im Vorjahr. Deutlich gesunken ist dagegen der Verbrauch von Heizöl, und zwar um 5,1 Prozent.

Die Endenergieproduktivität ist im Jahr 2016 leicht gesunken. Das Energiekonzept der Bundesregierung bezieht das Effizienzziel auch auf die Endenergieproduktivität, also auf das realer Bruttoinlandsprodukt pro Einheit Endenergieverbrauch. Im Jahr 2016 lag die Endenergieproduktivität bei 312,0 Euro/PJ gegenüber 314,8 Euro/PJ im Vorjahr, ein Rückgang um rund 0,9 Prozent (siehe obere Kurve in Abbildung 5.4).
Betrachtet man die einzelnen Energieträger, so war der Anstieg des Gasverbrauchs mit 6,9 Prozent am deutlichsten. Der Verbrauch von Kraftstoffen und Fernwärme stieg jeweils um 3,0 bzw. 1,4 Prozent. Außerdem wurde 1,0 Prozent mehr Steinkohle verbraucht als noch im Vorjahr. Deutlich gesunken ist dagegen der Verbrauch von Heizöl, und zwar um 5,1 Prozent.

Die Endenergieproduktivität ist im Jahr 2016 leicht gesunken. Das Energiekonzept der Bundesregierung bezieht das Effizienzziel auch auf die Endenergieproduktivität, also auf das reale Bruttoinlandsprodukt pro Einheit Endenergieverbrauch. Im Jahr 2016 lag die Endenergieproduktivität bei 312,0 Euro/PJ gegenüber 314,8 Euro/PJ im Vorjahr, ein Rückgang um rund 0,9 Prozent (siehe obere Kurve in Abbildung 5.4).

Abbildung 5.4: Zielsteckbrief: Energieproduktivität

| Ziel 2020 | Erhöhung der Endenergieproduktivität um 2,1 Prozent pro Jahr |
| Status 2016 | 1,1 Prozent pro Jahr seit 2008 |

in Euro/GJ

Transparenz und Beteiligung: Energieeffizienz – viele Möglichkeiten, um sich an der Energiewende zu beteiligen

5.3 Stromverbrauch und Stromeffizienz

Der Bruttostromverbrauch ist im Jahr 2016 gegenüber dem Vorjahr annähernd konstant geblieben. Der Bruttostromverbrauch gibt die im Inland verbrauchte Strommenge wieder. Er lag im Jahr 2016 bei rund 597 TWh (siehe Abbildung 5.5). Effizienzgewinne konnten die verbrauchssteigernden Faktoren, also das gute Wirtschaftswachstum und den Bevölkerungsanstieg, zwar ausgleichen, jedoch keine deutliche Reduktion des Verbrauchs bewirken.

Zwischen 2008 und 2016 hat sich der Bruttostromverbrauch um rund 3,6 Prozent verringert. Dies entspricht einem durchschnittlichen Rückgang von etwa 0,5 Prozent pro Jahr. Um das Reduktionsziel bis zum Jahr 2020 zu erreichen, müsste der Stromverbrauch in den verbleibenden vier Jahren ab dem Berichtsjahr 2016 um durchschnittlich 1,7 Prozent pro Jahr zurückgehen. Die Reduktionsrate müsste sich also mehr als verdreifachen – dies ist jedoch unwahrscheinlich. In absoluten Zahlen ausgedrückt, entspricht die verbleibende

Abbildung 5.5: Zielsteckbrief: Bruttostromverbrauch

| Status 2016 | -3,6 Prozent |

in TWh

Quelle: AGEB 12/2017

Trend

Maßnahmen Nationaler Aktionsplan Energieeffizienz
Differenz zum Zielwert mit rund 40 TWh etwa der jährlichen Stromproduktion von vier Kernkraftwerken. Dabei ist auch zu berücksichtigen: Um in den Bereichen Wärme und Verkehr die Dekarbonisierung weiter voranzutreiben, soll dort im Rahmen der Sektorkopplung zunehmend erneuerbar erzeugter Strom auf effiziente Weise eingesetzt werden. Dadurch entstehen neue Stromverbraucher. Damit der zusätzliche Bedarf an erneuerbarem Strom jedoch so gering wie möglich gehalten werden kann, sollen bei der Sektorkopplung grundsätzlich die Technologien verwendet werden, die Strom effizient in Wärme, Kälte oder Antrieb umwandeln und somit mit wenig erneuerbarem Strom möglichst viele Brennstoffe ersetzen (siehe Kapitel 13.1).

Die Zielarchitektur-Studie (siehe Kapitel 2.2) kommt auf Basis der durchgeführten Analysen zu folgendem Szenario: Das Ziel, den Bruttostromverbrauch bis 2020 gegenüber 2008 um 10 Prozent zu senken, wird danach verfehlt. Die Studie geht davon aus, dass sich die Reduktion bis zum Jahr 2020 auf rund minus 5,5 Prozent beläuft (innerhalb einer Bandbreite von minus 3,1 bis minus 7,9 Prozent, siehe Abbildung 5.5). Dabei wurde die Wirkung der Maßnahmen im Rahmen der Zielarchitektur berücksichtigt.

5.4 Nationaler Aktionsplan Energieeffizienz

Die wichtigsten Handlungsfelder der Energieeffizienzpolitik sind:

- Voranbringen der Energieeffizienz im Gebäudebereich
- Etablieren der Energieeffizienz als Rendite- und Geschäftsmodell
- Erhöhen der Eigenverantwortlichkeit für Energieeffizienz
Für diese Handlungsfelder definiert der NAPE sektorübergreifende Maßnahmen, mit denen der Energieverbrauch auf der Nachfrageseite gesenkt werden kann. Das Ziel war, durch Maßnahmen zur Steigerung der Energieeffizienz im Zusammenhang des NAPE insgesamt 390 bis 460 PJ Primärenergie bis zum Jahr 2020 einzusparen.

Aufgrund individueller Starttermine, Wirkungsweisen und der frühen Entwicklungsstände der einzelnen Effizienz-
ENERGIEVERBRAUCH UND ENERGIEEFFIZIENZ

Im Koalitionsvertrag zwischen CDU, CSU und SPD für die laufende Legislaturperiode ist vorgesehen, den NAPE basierend auf den Ergebnissen des Grünbuchs Energieeffizienz weiterzuentwickeln und schnellstmöglich umzusetzen. Bestehende Programme zur Förderung der Energieeffizienz sollen evaluiert und bei Bedarf nutzergerecht optimiert werden. Die Fördermittel sollen auf dem derzeitigen Niveau stabilisiert werden.

Tabelle 5.1: Bislang quantifizierbare Wirkungen des NAPE im Jahr 2016

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2016</td>
<td>2016</td>
</tr>
<tr>
<td>NAPE-Maßnahmen (nur Maßnahmen mit für das Berichtsjahr 2016 quantifizierten Primärenergieeinsparungen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂-Gebäudesanierungsprogramm: Wohngebäude</td>
<td>101</td>
<td>7.683</td>
</tr>
<tr>
<td>CO₂-Gebäudesanierungsprogramm: Nichtwohngebäude</td>
<td>k.A.</td>
<td>466</td>
</tr>
<tr>
<td>Anreizprogramm Energieeffizienz (APEE), Maßnahmen von Kfw und BAFA</td>
<td>2</td>
<td>142</td>
</tr>
<tr>
<td>Nationales Effizienzlabel für Heizungsanlagen</td>
<td>0,02</td>
<td>133</td>
</tr>
<tr>
<td>Marktanreizprogramm zur Förderung von Maßnahmen zur Nutzung erneuerbarer Energien im Wärmemarkt (MAP)</td>
<td>1</td>
<td>792</td>
</tr>
<tr>
<td>Kfw-Energieeffizienzprogramm für Produktionsanlagen und -prozesse</td>
<td>16</td>
<td>475</td>
</tr>
<tr>
<td>Initiative Energieeffizienznetzwerke</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>Energieauditpflicht für Nicht-KMU</td>
<td>4</td>
<td>264</td>
</tr>
<tr>
<td>Mittelstandsinitiative Energiewende und Klimaschutz (MIE)</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>Energieeffiziente und klimaschonende Produktionsprozesse</td>
<td>3</td>
<td>183</td>
</tr>
<tr>
<td>Nationale Top-Runner-Initiative (NTRI)</td>
<td>0,2</td>
<td>k.A.</td>
</tr>
<tr>
<td>STEP up! „STromEffizienzPotenziale nutzen“</td>
<td>0,1</td>
<td>6</td>
</tr>
<tr>
<td>Förderrichtlinie Energiemanagementsysteme</td>
<td>1</td>
<td>67</td>
</tr>
<tr>
<td>Energieberatung</td>
<td>5</td>
<td>325</td>
</tr>
<tr>
<td>Programme auf Grundlage der Beschlüsse vom 1. Juli 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heizungsoptimierung</td>
<td>0,03</td>
<td>2</td>
</tr>
<tr>
<td>Querschnittstechnologieförderung</td>
<td>6</td>
<td>359</td>
</tr>
<tr>
<td>Abwärme</td>
<td>0,78</td>
<td>52</td>
</tr>
<tr>
<td>Gesamtwirkung</td>
<td>140</td>
<td>11.022</td>
</tr>
</tbody>
</table>

Quelle: BMWi 05/2018

Im Koalitionsvertrag zwischen CDU, CSU und SPD für die laufende Legislaturperiode ist vorgesehen, den NAPE basierend auf den Ergebnissen des Grünbuchs Energieeffizienz weiterzuentwickeln und schnellstmöglich umzusetzen. Bestehende Programme zur Förderung der Energieeffizienz sollen evaluiert und bei Bedarf nutzergerecht optimiert werden. Die Fördermittel sollen auf dem derzeitigen Niveau stabilisiert werden.
Monitoring der zentralen Maßnahmen zur Förderung von Energieeinsparungen

KfW-Energieeffizienzprogramm für Produktionsanlagen und -prozesse

Aktueller Stand	Das KfW-Energieeffizienzprogramm Produktionsanlagen/-prozesse besteht in seiner jetzigen Form seit dem 01.07.15. Zuvor war es ein Bestandteil des KfW-Energieeffizienzprogramms, das auch die Förderung von Maßnahmen an Gebäuden (Neuinvestition, Sanierung, gebäudebezogene Anlagentechnik wie Heizung oder Beleuchtung) beinhaltete. Dieser Förderschwerpunkt wird seit dem 01.07.15 im KfW-Energieeffizienzprogramm „Energieeffizient Bauen und Sanieren“ (Kreditnummern 276, 277, 278) gebündelt.
Charakter des Instruments	Förderprogramm
Zielgruppe	Unternehmen
Betroffene Energieträger	alle
Start des Instruments	2015
Vollzug	KfW
Evaluierung und Hintergrundinformationen	Prognos AG, Förderdaten: KfW (Ergänzungen und Abschätzungen durch Prognos AG); Evaluation abgeschlossen im Dezember 2017; Förderung erfolgt als Darlehen. Auf Basis der vorliegenden Daten ist die Bestimmung von Wirtschaftlichkeitsfaktoren nicht möglich.

Monitoring-Indikatoren

<table>
<thead>
<tr>
<th>Primärenergieeinsparung (in PJ)</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endenergieeinsparung (in PJ)</td>
<td>4</td>
<td>k.A.</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Aq./Jahr)</td>
<td>475</td>
<td>2.000</td>
</tr>
</tbody>
</table>

Initiative Energieeffizienznetzwerke

| Aktueller Stand | • seit Beginn der Maßnahme insgesamt 102 Netzwerke gegründet |
| • Durchführung eines internationalen Workshops am 15.09.16 (gemeinsam mit IPEEC) |
| • 1. Jahreskonferenz der Initiative am 20.09.16 |
| • Zusammenarbeit mit Bundesländern und Verbandsakteuren (hierzu Workshop am 22.09.16 in Nürnberg) |
| • Arbeiten zur Definition eines abgestuften Netzwerkstandards für KMU |
Charakter des Instruments	Selbstverpflichtung der Wirtschaft
Zielgruppe	Unternehmen in Industrie, Gewerbe, Handel
Betroffene Energieträger	alle
Initiative Energieeffizienznetzwerke

Start des Instruments 03.12.14

Vollzug

Evaluierung und Hintergrundinformationen
jährliches Monitoring ab Ende 2017 durch Konsortium adelphi und Fraunhofer ISI

<table>
<thead>
<tr>
<th>Monitoring-Indikatoren</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung (in PJ)</td>
<td>1</td>
<td>75</td>
</tr>
<tr>
<td>Endenergieeinsparung (in PJ)</td>
<td>0,4</td>
<td>k. A.</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂ Äquiv./Jahr)</td>
<td>36</td>
<td>5.000</td>
</tr>
</tbody>
</table>
Energieauditpflicht für Nicht-KMU

Kurzbeschreibung
Zur Steigerung der Energieeffizienz von Unternehmen sind seit dem 22.04.15 alle Unternehmen, die kein kleines oder mittleres Unternehmen (KMU) sind, nach dem Energiedienstleistungsgesetz (EDL-G) verpflichtet gewesen, bis zum 05.12.15 ein Energieaudit durchzuführen und ab diesem Zeitpunkt mindestens alle vier Jahre ein weiteres Energieaudit durchzuführen. Durch die Einführung der Auditpflicht im Rahmen des NAPE hat die Bundesregierung Art. 8 Absatz 4-7 der europäischen Energieeffizienzrichtlinie umgesetzt.

Aktueller Stand
laufende Umsetzung

Charakter des Instruments
Ordnungsrecht

Zielgruppe
Nicht-KMU/verbundene Unternehmen

Betroffene Energieträger
alle

Start des Instruments
01.05.15 mit erster Nachweisverpflichtung zur Durchführung Energieaudit zum 05.12.15 oder alternativ Energiemanagementsystem nach ISO 50001 oder EMAS zum 31.12.16

Vollzug
BAFA

Evaluierung und Hintergrundinformationen
Evaluierung im Herbst 2016. BAFA führt regelmäßige Stichprobenkontrollen durch, in denen jährlich ca. 500 Unternehmen auf die Erfüllung ihrer Verpflichtungen überprüft werden.

<table>
<thead>
<tr>
<th>Monitoring-Indikatoren</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung (in PJ)</td>
<td>4</td>
<td>51</td>
</tr>
<tr>
<td>Endnergieeinsparung (in PJ)</td>
<td>3</td>
<td>k.A.</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Aq./Jahr)</td>
<td>264</td>
<td>3.400</td>
</tr>
</tbody>
</table>

Querschnittstechnologieförderung

Kurzbeschreibung

Aktueller Stand
laufende Umsetzung

Charakter des Instruments
Förderprogramm

Zielgruppe
Unternehmen (insbesondere KMU)

Betroffene Energieträger
alle

Start des Instruments
2012

Vollzug
BAFA

Evaluierung und Hintergrundinformationen

<table>
<thead>
<tr>
<th>Monitoring-Indikatoren</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung (in PJ)</td>
<td>6</td>
<td>k.A.</td>
</tr>
</tbody>
</table>
Querschnittstechnologieförderung

<table>
<thead>
<tr>
<th>Endenergieeinsparung (in PJ)</th>
<th>3</th>
<th>k.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Äq./Jahr)</td>
<td>359</td>
<td>900</td>
</tr>
<tr>
<td>Förderfälle (Anzahl/Jahr)</td>
<td>3.125 Vorhaben</td>
<td>Mindestens 5.000 Vorhaben pro Jahr</td>
</tr>
</tbody>
</table>

Abwärme

Kurzbeschreibung

Aktueller Stand

Charakter des Instruments
Förderprogramm

Zielgruppe
Unternehmen

Betroffene Energieträger
Strom, Brennstoffe

Start des Instruments
2016

Vollzug
KfW

Evaluierung und Hintergrundinformationen
erste Berechnung mit detaillierten Daten aus dem Monitoring Abwärme (dena) aus nur 39 Fällen

Monitoring-Indikatoren

<table>
<thead>
<tr>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung (in PJ)</td>
<td>1</td>
</tr>
<tr>
<td>Endenergieeinsparung (in PJ)</td>
<td>1</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Äq./Jahr)</td>
<td>52</td>
</tr>
</tbody>
</table>
Mittelstandsinitiative Energiewende und Klimaschutz (MIE)

Kurzbeschreibung

Aktueller Stand
Die erste Förderperiode lief zum 31.12.15 aus. Die Fortsetzung der Mittelstandsinitiative ist am 01.01.16 gestartet und konnte damit nahtlos an das Vorgängerprojekt anschließen. Die Mittelstandsinitiative 2.0 ist wie das Vorgängerprojekt ein Gemeinschaftsprojekt von BMU und BMWi. Die sieben Entwicklungswerkstätten wurden bereits in Transferwerkstätten umgewandelt und geben ihr erworbenes Wissen an neue Transferpartner weiter. Das Energiebuch konnte fertiggestellt werden und steht den Handwerksunternehmen zur Nutzung zur Verfügung.

Charakter des Instruments
Förderprogramm

Zielgruppe
Unternehmen (Mittelstand, Handwerk)

Betroffene Energieträger
Strom, Brennstoffe

Start des Instruments
2013

Vollzug
BAFA

Evaluierung und Hintergrundinformationen

Monitoring-Indikatoren

<table>
<thead>
<tr>
<th>Primärenergieeinsparung (in PJ)</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endenergieeinsparung (in PJ)</td>
<td>0</td>
<td>k.A.</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Aq./Jahr)</td>
<td>37</td>
<td>5.000</td>
</tr>
</tbody>
</table>

Energieeffiziente und klimaschonende Produktionsprozesse

Kurzbeschreibung

Aktueller Stand
im Jahr 2016 Maßnahme bis zum 31.12.17 verlängert

Charakter des Instruments
Förderprogramm

Zielgruppe
Unternehmen, Kontraktoren
Energieeffiziente und klimaschonende Produktionsprozesse

<table>
<thead>
<tr>
<th>Betroffene Energieträger</th>
<th>Strom, Brennstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start des Instruments</td>
<td>2013 (erste Ausschreibung 2014)</td>
</tr>
<tr>
<td>Vollzug</td>
<td>Projektträger Karlsruhe – Produktionstechnologie</td>
</tr>
<tr>
<td>Evaluierung und Hintergrundinformationen</td>
<td>Evaluierung durch die Prognos AG auf Basis von Förderdaten des Projektträgers, ergänzenden Informationen aus den Anträgen sowie schriftlichen Befragungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitoring-Indikatoren</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung (in PJ)</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Endenergieeinsparung (in PJ)</td>
<td>2</td>
<td>k.A.</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Aq./Jahr)</td>
<td>183</td>
<td>350</td>
</tr>
</tbody>
</table>

Unterstützung der Marktüberwachung

Kurzbeschreibung	Zur Stärkung der Zuverlässigkeit, Effektivität und Effizienz bestehender und gegebenenfalls neuer Prüfmethoden/Standards, und damit letztlich auch zur Stärkung der Effektivität und Glaubwürdigkeit der produktbezogenen Energieeffizienzinstrumente der EU, wurde die Bundesanstalt für Materialforschung und -prüfung (BAM) mit der Durchführung dieses Projekts beauftragt. Dazu werden Ringversuche durchgeführt, die die Prüfmethoden validieren oder mögliche Mängel aufzeigen sollen. Es wird geprüft, ob die Normen, die im Rahmen der Prüfungen der Marktüberwachung zur Anwendung kommen, geeignet, d.h. reproduzierbar, wirksam und effizient, sind sowie die in der Praxis auftretenden Energieverbräuche realistisch abbilden. Die Methoden werden außerdem auf die Möglichkeit der Vereinfachung und Optimierung durch weitere Einzelprüfungen bei unabhängigen Instituten untersucht, wobei mögliche Mängelschwerpunkte bei den untersuchten Produkten erkannt werden können.
Aktueller Stand	Abschluss der Ringversuche bis Ende 2017, Abschluss Produktprüfungen bis Q3/2018
Charakter des Instruments	Marktüberwachung
Zielgruppe	Gerätehersteller, Marktüberwachungsbehörden, Haushalte
Betroffene Energieträger	alle
Start des Instruments	01.01.16
Vollzug	Bundesanstalt für Materialforschung und -prüfung (BAM)

<table>
<thead>
<tr>
<th>Monitoring-Indikatoren</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung (in PJ)</td>
<td>k.A. (Wirkung erst mit Übernahme der Ergebnisse durch Marktüberwachung)</td>
<td>0,2</td>
</tr>
<tr>
<td>Endenergieeinsparung (in PJ)</td>
<td>k.A. (Wirkung erst mit Übernahme der Ergebnisse durch Marktüberwachung)</td>
<td>k.A.</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Aq./Jahr)</td>
<td>k.A. (Wirkung erst mit Übernahme der Ergebnisse durch Marktüberwachung)</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Charakter des Instruments</th>
<th>Öffentlichkeitsarbeit, Zusammenarbeit mit Stakeholdern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zielgruppe</td>
<td>Gerätehersteller, Handel, Endverbraucher</td>
</tr>
<tr>
<td>Betroffene Energieträger</td>
<td>alle</td>
</tr>
<tr>
<td>Start des Instruments</td>
<td>01.01.16</td>
</tr>
<tr>
<td>Vollzug</td>
<td>BAFA/BfEE</td>
</tr>
<tr>
<td>Evaluierung und Hintergrundinformationen</td>
<td>Einsparwirkungen werden im Rahmen der begleitenden Evaluation durch IZT ermittelt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitoring-Indikatoren</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung (in PJ)</td>
<td>0,2</td>
<td>0,4</td>
</tr>
<tr>
<td>Endenergieeinsparung (in PJ)</td>
<td>k. A.</td>
<td>k. A.</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Aq./Jahr)</td>
<td>k. A.</td>
<td>21</td>
</tr>
</tbody>
</table>
EU-Energie-Label-Verordnung

Kurzbeschreibung	Deutschland hat sich im Rahmen der EU-Verhandlungen zur Energie-Label-Verordnung erfolgreich für ein klares und aussagekräftiges Energielabel eingesetzt. Die Verordnung sieht einen Übergang von A+++ zum A- bis G-Label vor und beschreibt das Verfahren und die Fristen, in deren Rahmen der Übergang vollzogen wird. Mit dem Aufbau einer EU-Produktdatenbank zum 01.01.19 soll den Verbrauchern der Effizienzvergleich zwischen den Produkten und den Marktüberwachungsbehörden die Überprüfung der Labelanforderungen erleichtert werden. Mit der neuen Verordnung werden auch die Anforderungen für die Marktüberwachung sowie der Austausch der Marktüberwachungsbehörden auf EU-Ebene verbessert.
Charakter des Instruments	Information
Zielgruppe	Gerätehersteller, Marktüberwachungsbehörden, Haushalte
Betroffene Energieträger	alle
Start des Instruments	Die neue Verordnung trat im August 2017 in Kraft.
Vollzug	BMWi

<table>
<thead>
<tr>
<th>Monitoring-Indikatoren</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
</table>

STEP up! „STromEffizienzPotenziale nutzen“

Aktueller Stand	1. Ausschreibungsround lief vom 01.06.16 – 31.08.16; 2. Runde (01.11.16 – 31.01.17); 3. Runde (01.03.17 – 31.05.17); 4. Runde (01.09.17 – 30.11.17). Für 2018 sind zwei weitere Ausschreibungsrounds geplant.
Charakter des Instruments	Förderprogramm (Pilotphase)
Zielgruppe	Unternehmen (und über Sammelprojekt ggf. auch private Verbraucher)
Betroffene Energieträger	Strom; Einsparungen anderer Energieträger sind ab der 4. Runde im Rahmen der geschlossenen Ausschreibungen zulässig; Ausweitung auf Wärme soll bis Ende 2018 geprüft werden.
Pilotprogramm Einsparzähler

Kurzbeschreibung

Aktueller Stand
- Antragszahlen: bislang 38 Anträge, 21 davon bislang beschieden
- nächste Meilensteine: Seit 2018 werden monatlich anonymisierte und aggregierte Energieeinsparmengen übermittelt. Zur Weiterentwicklung der Methoden wird geprüft, welche Einsparungen tatsächlich nach Durchführung von Energiesparmaßnahmen erreicht werden und ob per Einsparzähler nachgewiesene „eingesparte kWh“ gebündelt und damit kommerziellen Investoren verfügbar gemacht werden können (Scale-up) „ESZ als Betriebssystem für die Effizienz 4.0“.

Charakter des Instruments
Innovationsprogramm zur Einführung digitaler Energiesparassistenten und -geschäftsmodule

Zielgruppe
Start-ups, Energiewirtschaft, Kontraktoren, Unternehmen, die Energiesparprojekte bei Endkunden durchführen

Betroffene Energieträger
leitungsgebundene Energieträger (Strom, Gas, Wärme, Kälte)

Start des Instruments
Mai 2016

Vollzug
BAFA

__Förderrichtlinie Energiemanagementsysteme__

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktueller Stand</td>
<td>aktuelle Richtlinie in Kraft seit 01.01.17, darin kleine Änderungen bei den antragsberechtigten Unternehmen und den geförderten Maßnahmen</td>
</tr>
<tr>
<td>Charakter des Instruments</td>
<td>Förderprogramm</td>
</tr>
<tr>
<td>Zielgruppe</td>
<td>Unternehmen</td>
</tr>
<tr>
<td>Betroffene Energieträger</td>
<td>Brennstoffe, Strom</td>
</tr>
<tr>
<td>Start des Instruments</td>
<td>Juli 2013</td>
</tr>
<tr>
<td>Vollzug</td>
<td>BAFA</td>
</tr>
</tbody>
</table>

__Evaluierung und Hintergrundinformationen__

Evaluation des Programms im Jahr 2017 durch Fraunhofer ISI für das BMWi sowie im Rahmen der Evaluation des Energieeffizienzfonds (siehe Zwischenbericht 2017 für BMWi, Abschnitt Energiemanagementsysteme)

<table>
<thead>
<tr>
<th>Monitoring-Indikatoren</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung (in PJ)</td>
<td>1</td>
<td>k.A.</td>
</tr>
<tr>
<td>Endenergieeinsparung (in PJ)</td>
<td>1</td>
<td>k.A.</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Äq./Jahr)</td>
<td>67</td>
<td>83</td>
</tr>
</tbody>
</table>

__Pilotprogramm Einsparzähler__

<table>
<thead>
<tr>
<th>Monitoring-Indikatoren</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung (in PJ)</td>
<td>0</td>
<td>k.A.</td>
</tr>
<tr>
<td>Endenergieeinsparung (in PJ)</td>
<td>0</td>
<td>k.A.</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Äq./Jahr)</td>
<td>0</td>
<td>k.A.</td>
</tr>
</tbody>
</table>
6 Gebäude

Wo stehen wir?

Der Primärenergiebedarf im Gebäudebereich (Definition siehe Kapitel 6.2) ist im Jahr 2016 gegenüber dem Vorjahr gesunken, und zwar um 3,2 Prozent. Gegenüber dem Basisjahr 2008 bedeutet das eine Minderung um 18,3 Prozent.

Der Anteil erneuerbarer Energien am Wärmeverbrauch betrug im Jahr 2016 13,2 Prozent, was dem 2020-Ziel von 14 Prozent bereits sehr nahe kommt.

Was ist neu?

<table>
<thead>
<tr>
<th>Effizienz und Verbrauch</th>
<th>2016</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergiebedarf Gebäude (gegenüber 2008)</td>
<td>-18,3 %</td>
<td></td>
<td></td>
<td>-80 %</td>
<td></td>
</tr>
<tr>
<td>Wärmebedarf Gebäude (gegenüber 2008)</td>
<td>-6,3 %</td>
<td>-20 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erneuerbare Energien</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil am Wärmeverbrauch</td>
<td>13,2 %</td>
<td>14 %</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.1 Gebäuderelevanter Energieverbrauch

Die Zielarchitektur-Studie (siehe Kapitel 2.2) kommt auf Basis der durchgeführten Analysen zu folgendem Szenario: Das Ziel, den gebäuderelevanten Endenergieverbrauch bis zum Jahr 2020 gegenüber dem Jahr 2008 um 20 Prozent zu senken, wird danach verfehlt. Die Studie geht davon aus, dass sich die Reduktion bis 2020 auf rund minus 12,5 Prozent beläuft (innerhalb einer Bandbreite von minus 11,5 Prozent bis minus 15,8 Prozent, siehe Abbildung 6.3). Dabei wurde die Wirkung der Maßnahmen im Rahmen der Zielarchitektur berücksichtigt.

Die Zielarchitektur-Studie (siehe Kapitel 2.2) kommt auf Basis der durchgeführten Analysen zu folgendem Szenario: Das Ziel, den gebäuderelevanten Endenergieverbrauch bis zum Jahr 2020 gegenüber dem Jahr 2008 um 20 Prozent zu senken, wird danach verfehlt. Die Studie geht davon aus, dass sich die Reduktion bis 2020 auf rund minus 12,5 Prozent beläuft (innerhalb einer Bandbreite von minus 11,5 Prozent bis minus 15,8 Prozent, siehe Abbildung 6.3). Dabei wurde die Wirkung der Maßnahmen im Rahmen der Zielarchitektur berücksichtigt.

Abbildung 6.2: Zielsteckbrief: Endenergieverbrauch für Wärme

| Ziel 2020 | Reduktion des gebäuderelevanten Endenergieverbrauchs (Wärmebedarf) um 20 Prozent (ggü. 2008) |
| Status 2016 | -6,3 Prozent |

Abbildung 6.3: Reduktion des gebäuderelevanten Endenergieverbrauchs laut Zielarchitektur-Studie

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Prognose 2020 (Min-max-Bandbreite Instrumentenwirkung)</th>
<th>Prognose 2020 (Studienabschätzung zur Instrumentenwirkung)</th>
<th>reale Entwicklung bis 2016</th>
<th>Referenzentwicklung (einschl. Instrumente bis 2008)</th>
<th>Ziel 2020 (2.761 PJ/-20 %)</th>
<th>Trendfortschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>3.144</td>
<td>3.230</td>
<td>3.418</td>
<td>3.234</td>
<td>3.102</td>
<td>2.917</td>
</tr>
<tr>
<td>2011</td>
<td>3.230</td>
<td>3.418</td>
<td>3.234</td>
<td>3.102</td>
<td>2.917</td>
<td>2.937</td>
</tr>
<tr>
<td>2012</td>
<td>3.418</td>
<td>3.234</td>
<td>3.102</td>
<td>2.917</td>
<td>2.937</td>
<td>3.144</td>
</tr>
<tr>
<td>2013</td>
<td>3.234</td>
<td>3.102</td>
<td>2.917</td>
<td>2.937</td>
<td>3.144</td>
<td>3.234</td>
</tr>
<tr>
<td>2014</td>
<td>2.917</td>
<td>2.937</td>
<td>3.144</td>
<td>3.234</td>
<td>3.102</td>
<td>2.917</td>
</tr>
<tr>
<td>2015</td>
<td>2.937</td>
<td>3.102</td>
<td>2.917</td>
<td>3.144</td>
<td>3.234</td>
<td>3.418</td>
</tr>
<tr>
<td>2016</td>
<td>3.102</td>
<td>2.917</td>
<td>2.937</td>
<td>3.144</td>
<td>3.234</td>
<td>3.418</td>
</tr>
<tr>
<td>2018</td>
<td>3.144</td>
<td>3.230</td>
<td>3.234</td>
<td>3.102</td>
<td>2.917</td>
<td>2.937</td>
</tr>
<tr>
<td>2019</td>
<td>3.234</td>
<td>3.102</td>
<td>2.917</td>
<td>2.937</td>
<td>2.917</td>
<td>2.937</td>
</tr>
<tr>
<td>2020</td>
<td>3.444</td>
<td>3.234</td>
<td>3.144</td>
<td>3.102</td>
<td>2.917</td>
<td>2.937</td>
</tr>
</tbody>
</table>

Quelle: AGEB 11/2017

Abbildung 6.4: Trend

Maßnahmen: Nationaler Aktionsplan Energieeffizienz, Energieeffizienzstrategie Gebäude und Aktionsprogramm Klimaschutz

Quelle: Prognos, Fraunhofer ISI, DLR 2018
Abbildung 6.4: Entwicklung des spezifischen Endenergieverbrauchs zur Erzeugung von Raumwärme in privaten Haushalten

in kWh/m²

Quelle: AGEB und StBA 11/2017

6.2 Primärenergiebedarf

Seit dem Jahr 2008 hat sich der Primärenergiebedarf bereits um gut 18 Prozent verringert. Dies entspricht einer durchschnittlichen jährlichen Minderung um 2,5 Prozent. Das zeigt, dass der richtige Pfad zur Reduktion des Primärenergiebedarfs eingeschlagen ist (siehe Abbildung 6.5). Eine lineare Fortschreibung zur Einschätzung des Zielerre-
GEBÄUDE

6.3 Sanierung und Investitionen im Gebäudesektor

Abbildung 6.6: Beheizungssysteme in neuen Wohnungen 2000 bis 2016 in Prozent

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Gas (**)</th>
<th>Elektrische Wärmepumpen</th>
<th>Fernwärme</th>
<th>Strom</th>
<th>Heizöl</th>
<th>Holz, Holzpellets</th>
<th>andere ***)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016*</td>
<td>44,40</td>
<td>23,4</td>
<td>23,3</td>
<td>0,7</td>
<td>1,5</td>
<td>5,3</td>
<td>1,5</td>
</tr>
<tr>
<td>2015</td>
<td>49,90</td>
<td>20,7</td>
<td>20,6</td>
<td>1,1</td>
<td>0,7</td>
<td>5,3</td>
<td>1,5</td>
</tr>
<tr>
<td>2014</td>
<td>49,90</td>
<td>20,1</td>
<td>21,1</td>
<td>0,6</td>
<td>0,7</td>
<td>6,2</td>
<td>1,4</td>
</tr>
<tr>
<td>2013</td>
<td>48,30</td>
<td>22,5</td>
<td>19,8</td>
<td>0,7</td>
<td>3,8</td>
<td>6,4</td>
<td>1,5</td>
</tr>
<tr>
<td>2012</td>
<td>48,50</td>
<td>23,8</td>
<td>18,6</td>
<td>0,6</td>
<td>0,9</td>
<td>6,3</td>
<td>1,4</td>
</tr>
<tr>
<td>2011</td>
<td>50,10</td>
<td>22,6</td>
<td>16,3</td>
<td>0,4</td>
<td>4,5</td>
<td>5,6</td>
<td>2,5</td>
</tr>
<tr>
<td>2010</td>
<td>50,30</td>
<td>23,5</td>
<td>14,6</td>
<td>0,2</td>
<td>1,8</td>
<td>5,0</td>
<td>4,1</td>
</tr>
<tr>
<td>2009</td>
<td>50,90</td>
<td>23,9</td>
<td>13,1</td>
<td>0,2</td>
<td>1,9</td>
<td>5,0</td>
<td>4,4</td>
</tr>
<tr>
<td>2008</td>
<td>58,40</td>
<td>19,8</td>
<td>12,0</td>
<td>0,2</td>
<td>2,3</td>
<td>4,0</td>
<td>2,5</td>
</tr>
<tr>
<td>2007</td>
<td>65,60</td>
<td>14,3</td>
<td>10,2</td>
<td>0,2</td>
<td>3,2</td>
<td>3,0</td>
<td>2,4</td>
</tr>
<tr>
<td>2006</td>
<td>66,90</td>
<td>11,2</td>
<td>9,0</td>
<td>0,1</td>
<td>4,1</td>
<td>6,0</td>
<td>1,6</td>
</tr>
<tr>
<td>2005</td>
<td>74,00</td>
<td>5,4</td>
<td>8,6</td>
<td>1,2</td>
<td>4,8</td>
<td>3,0</td>
<td>1,4</td>
</tr>
<tr>
<td>2004</td>
<td>74,90</td>
<td>3,1</td>
<td>7,3</td>
<td>1,0</td>
<td>7,3</td>
<td>12,1</td>
<td>1,2</td>
</tr>
<tr>
<td>2003</td>
<td>74,30</td>
<td>2,9</td>
<td>7,0</td>
<td>1,2</td>
<td>7,2</td>
<td>12,0</td>
<td>2,7</td>
</tr>
<tr>
<td>2002</td>
<td>75,80</td>
<td>2,1</td>
<td>7,2</td>
<td>1,3</td>
<td>7,2</td>
<td>11,0</td>
<td>2,2</td>
</tr>
<tr>
<td>2001</td>
<td>75,90</td>
<td>2,0</td>
<td>7,5</td>
<td>1,3</td>
<td>7,5</td>
<td>11,3</td>
<td>1,6</td>
</tr>
<tr>
<td>2000</td>
<td>76,70</td>
<td>0,8</td>
<td>7,0</td>
<td>1,3</td>
<td>7,0</td>
<td>13,4</td>
<td>0,8</td>
</tr>
</tbody>
</table>

*) vorläufig, **) inkl. Biomethan, ***) bis 2003 inkl. Holz

Quelle: BDEW 02/2017

Transparenz und Beteiligung: An der Wärmewende kann sich jeder beteiligen.

6.4 Energieeffizienzstrategie Gebäude und Nationaler Aktionsplan Energieeffizienz im Gebäudebereich

Monitoring der zentralen Maßnahmen zur Förderung von Energieeinsparungen im Gebäudebereich

CO₂-Gebäudesanierungsprogramm: Wohngebäude

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktueller Stand</td>
<td>zum 01.04.16 Einführung eines neuen Förderstandards „Effizienzhaus 40 Plus“ im Wohngebäudebereich sowie Erhöhung des Förderhöchstbetrags von 50.000 Euro auf 100.000 Euro</td>
</tr>
<tr>
<td>Charakter des Instruments</td>
<td>Förderprogramm</td>
</tr>
<tr>
<td>Zielgruppe</td>
<td>Eigentümer, Ersterwerber, Bauherren von Wohngebäuden und Eigentumswohnungen</td>
</tr>
<tr>
<td>Betroffene Energieträger</td>
<td>Erdgas, Heizöl, Kohle, Flüssiggas, Biomasse, Strom, Fernwärme</td>
</tr>
<tr>
<td>Start des Instruments</td>
<td>2006</td>
</tr>
<tr>
<td>Vollzug</td>
<td>KfW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitoring-Indikatoren</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung (in PJ)</td>
<td>101</td>
<td>k.A.</td>
</tr>
<tr>
<td>Endenergieeinsparung (in PJ)</td>
<td>77</td>
<td>k.A.</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Aq./Jahr)</td>
<td>7.683</td>
<td>k.A.</td>
</tr>
</tbody>
</table>

CO₂-Gebäudesanierungsprogramm: Nichtwohngebäude

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktueller Stand</td>
<td>2016 keine Änderungen der zentralen Förderbedingungen</td>
</tr>
<tr>
<td>Charakter des Instruments</td>
<td>Förderprogramm</td>
</tr>
<tr>
<td>Zielgruppe</td>
<td>Eigentümer, Ersterwerber, Bauherren von Nichtwohngebäuden und Eigentumswohnungen</td>
</tr>
<tr>
<td>Betroffene Energieträger</td>
<td>Erdgas, Heizöl, Kohle, Flüssiggas, Biomasse, Strom, Fernwärme</td>
</tr>
<tr>
<td>Start des Instruments</td>
<td>2007</td>
</tr>
<tr>
<td>Vollzug</td>
<td>KfW</td>
</tr>
<tr>
<td>Evaluierung und Hintergrundinformationen</td>
<td>Förderprogramme fortlaufend evaluiert, zuletzt 2015 für die Förderjahre 2011 bis 2014 durch die Arbeitsgemeinschaft IWU und Fraunhofer</td>
</tr>
</tbody>
</table>
Anreizprogramm Energieeffizienz (APEE)

Kurzbeschreibung

Aktueller Stand
zum 01.01.16 Programmstart mit den Förderkomponenten „Heizungspaket“ und „Lüftungspaket“, zum 01.08.16 Programmstart des Förderbausteins „Brennstoffzelle“

Charakter des Instruments
Förderprogramm

Zielgruppe
Eigentümer von Wohngebäuden und Eigentumswohnungen, Energiedienstleistungsunternehmen (Kontraktoren)

Betroffene Energieträger
Erdgas, Heizöl, Kohle, Flüssiggas, Biomasse, Strom, Fernwärme

Start des Instruments
2016

Vollzug
KfW und BAFA

Evaluierung und Hintergrundinformationen

Monitoring-Indikatoren

<table>
<thead>
<tr>
<th>Indikator</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>(in PJ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endenergieeinsparung</td>
<td>5</td>
<td>k.A.</td>
</tr>
<tr>
<td>(in PJ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂-Einsparung</td>
<td>466</td>
<td>k.A.</td>
</tr>
<tr>
<td>(in kt CO₂-Äq./Jahr)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nationale Effizienzlabel für Heizungsaltanlagen

Kurzbeschreibung
Das Nationale Effizienzlabel für Heizungsaltanlagen soll Verbraucher über den Effizienzstatus ihrer alten Heizgeräte informieren und sie motivieren, ihre ineffizienten Heizgeräte auszutauschen. Der Bezirksschornsteinfeger, Installateur oder Energieberater nimmt bei der Labelvergabe eine individuelle Bewertung des Heizgerätes vor, informiert über die Bedeutung des Labels und verteilt einen Flyer mit Hinweis über Beratungs- und Förderangebote. Es wird erwartet, dass über das nationale Heizungslabel die Austauschraten in Deutschland um circa 20% auf 3,7% pro Jahr gesteigert werden kann.

Aktueller Stand

Monitoring-Indikatoren

<table>
<thead>
<tr>
<th>Indikator</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung</td>
<td>2</td>
<td>k.A.</td>
</tr>
<tr>
<td>(in PJ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endenergieeinsparung</td>
<td>1</td>
<td>k.A.</td>
</tr>
<tr>
<td>(in PJ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂-Einsparung</td>
<td>142</td>
<td>k.A.</td>
</tr>
<tr>
<td>(in kt CO₂-Äq./Jahr)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nationales Effizienzlabel für Heizungsaltanlagen

<table>
<thead>
<tr>
<th>Charakter des Instruments</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zielgruppe</td>
<td>Haushalte, kleine GHD</td>
</tr>
<tr>
<td>Betroffene Energieträger</td>
<td>Gas, Öl</td>
</tr>
<tr>
<td>Start des Instruments</td>
<td>2016</td>
</tr>
<tr>
<td>Vollzug</td>
<td>BAFA</td>
</tr>
</tbody>
</table>

Evaluierung und Hintergrundinformationen:

<table>
<thead>
<tr>
<th>Monitoring-Indikatoren</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung (in PJ)</td>
<td>0,006 bis 0,019</td>
<td>4,6 bis 13,9</td>
</tr>
<tr>
<td>Endnergieeinsparung (in PJ)</td>
<td>0,005 bis 0,016</td>
<td>0,3 bis 2</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Aq./Jahr)</td>
<td>0,42 bis 1,33</td>
<td>0,3 bis 1</td>
</tr>
</tbody>
</table>

Förderung der Heizungsoptimierung durch hocheffiziente Pumpen und hydraulischen Abgleich

Aktueller Stand	bis Ende 2016 Anlaufphase des Programms mit monatlich steigenden Förderanträgen
Charakter des Instruments	Förderprogramm
Zielgruppe	Privatpersonen, Unternehmen, Kommunen, Genossenschaften, gemeinnützige Organisationen
Betroffene Energieträger	Gas, Öl, Strom
Start des Instruments	01.08.16
Vollzug	BAFA

Evaluierung und Hintergrundinformationen:
jährliche Evaluation des Programms in 06/17 gestartet, erste belastbare Ergebnisse in 2018 erwartet

<table>
<thead>
<tr>
<th>Monitoring-Indikatoren</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung (in PJ)</td>
<td>0,03</td>
<td>k.A.</td>
</tr>
<tr>
<td>Endnergieeinsparung (in PJ)</td>
<td>0,02</td>
<td>k.A.</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Aq./Jahr)</td>
<td>2</td>
<td>1.800</td>
</tr>
<tr>
<td>Förderfälle (Anzahl/Jahr)</td>
<td>20.989 (08/16–12/16)</td>
<td>2 Millionen ineffiziente Pumpen pro Jahr ersetzen; 200.000 hydraulische Abgleiche pro Jahr</td>
</tr>
</tbody>
</table>
Marktanreizprogramm zur Förderung von Maßnahmen zur Nutzung erneuerbarer Energien im Wärmemarkt (MAP)

Kurzbeschreibung

Aktueller Stand
Mit dem Inkrafttreten der weiterentwickelten Förderrichtlinie zum 01.04.15 wurden die Mittel für das MAP für die Jahre 2015–2019 mit einem Volumen von über 300 Millionen Euro pro Jahr verstetigt. Das MAP soll die Marktentwicklung im erneuerbaren Wärme-/Kältemarkt kontinuierlich beleben und weitere Innovationen in diesem Marktsegment anreizen.

Charakter des Instruments
Förderprogramm

Zielgruppe
Privathaushalte, Unternehmen, Kommunen

Betroffene Energieträger
alle

Start des Instruments
2000

Vollzug
BAFA und KfW

Evaluierung und Hintergrundinformationen
Das MAP wird kontinuierlich evaluiert und wissenschaftlich fortentwickelt, um insbesondere den aktuellen Stand der Technik sowie die Marktentwicklung zu berücksichtigen. Daten stammen aus einer vorläufigen Fassung des Evaluierungsberichts 2016.

Monitoring-Indikatoren

<table>
<thead>
<tr>
<th>Primärenergieeinsparung (in PJ)</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endenergieeinsparung (in PJ)</td>
<td>1,5</td>
<td>5</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Aq./Jahr)</td>
<td>792</td>
<td>2.373</td>
</tr>
</tbody>
</table>

Aktueller Stand
Im Oktober 2017 erfolgte eine Überarbeitung und Neuveröffentlichung der Förderbekanntmachung. Förderprojekte können jetzt eine Laufzeit von bis zu fünf Jahren haben und die Förderbedingungen wurden leicht angepasst, um die Attraktivität der Maßnahme insbesondere für Transformationsprojekte weiter zu steigern.

Charakter des Instruments
Förderprogramm

Zielgruppe
Konsortien aus Unternehmen und Forschungseinrichtungen

Betroffene Energieträger
alle

Start des Instruments
2016

Evaluierung und Hintergrundinformationen

Monitoring-Indikatoren

<table>
<thead>
<tr>
<th>Monitoring-Indikatoren</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung (in PJ)</td>
<td>0 (s.o.)</td>
<td>0 (s.o.)</td>
</tr>
<tr>
<td>Endenergieeinsparung (in PJ)</td>
<td>0 (s.o.)</td>
<td>0 (s.o.)</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Äq./Jahr)</td>
<td>0 (s.o.)</td>
<td>0 (s.o.)</td>
</tr>
</tbody>
</table>
Energieberatung

<table>
<thead>
<tr>
<th>Kurzbeschreibung</th>
<th>Energieberatung der Verbraucherzentralen, Energieberatung Kommunen, Energieberatung Mittelstand, Energieberatung für Wohngebäude (Vor-Ort-Beratung, individueller Sanierungsfahrplan)</th>
</tr>
</thead>
</table>

Charakter des Instruments

- Förderprogramme

Zielgruppe

- Privatpersonen, Mieter und Eigentümer, Unternehmen, Kommunen, gemeinnützige Organisationen

Betroffene Energieträger

- Strom, Wärme

Start des Instruments

- fortgeführtes Instrument

Vollzug

- BAFA

Evaluierung und Hintergrundinformationen

Monitoring-Indikatoren

<table>
<thead>
<tr>
<th>Monitoring-Indikatoren</th>
<th>2016</th>
<th>2020 Zielindikator des Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärenergieeinsparung (in PJ)</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Endenergieeinsparung (in PJ)</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>CO₂-Einsparung (in kt CO₂-Äq./Jahr)</td>
<td>325</td>
<td>250</td>
</tr>
</tbody>
</table>
7 Verkehr

Wo stehen wir?

Dazu gehört eine möglichst umfassende Elektrifizierung der Fahrzeugantriebe. Mit Ausnahme des Schienenverkehrs steht Deutschland hier noch am Anfang. Gleichwohl nimmt die Zahl an Fahrzeugen mit alternativen Antrieben stetig zu. Der beschleunigte Ausbau entsprechender Infrastrukturen steht im Fokus.

Was ist neu?

Im Rahmen des Koalitionsvertrages zwischen CDU, CSU und SPD wurde festgelegt, dass die Maßnahmen des „Masterplans Schienengüterverkehr“ dauerhaft umgesetzt werden, um den Schienengüterverkehr dauerhaft zu stärken. Eine wichtige Maßnahme kann die Absenkung der Trassenpreise durch zusätzliche Bundesmittel sein.

Mit dem Umweltbonus, der Änderung der Ladesäulenverordnung und weiteren Maßnahmen zur Unterstützung des Aufbaus einer flächendeckenden Ladeinfrastruktur setzt die Bundesregierung ihr Bestreben fort, die Elektromobilität massenmarktfähig zu machen.

Forschungsinitiativen beschäftigen sich u. a. mit der Energiewende im Verkehrssektor durch Nutzung regenerativ erzeugter Kraftstoffe und durch Sektorkopplung (wie bei der „Initiative Effizienzhaus Plus“). Weitere Initiativen befassen sich mit LNG- und elektrischen Antriebstechnologien für Schiffe und den Schwerlastverkehr.

<table>
<thead>
<tr>
<th>Effizienz und Verbrauch</th>
<th>2016</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endenergieverbrauch Verkehr (ggü. 2005)</td>
<td>4,2 %</td>
<td>-10 %</td>
<td>-40 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.1 Energieverbrauch im Verkehrssektor

Abbildung 7.1: Zielsteckbrief: Entwicklung des Endenergieverbrauchs im Verkehrssektor

| Ziel 2020 | Reduktion des Endenergieverbrauchs um 10 Prozent (ggü. 2005) |
| Status 2016 | 4,2 Prozent |

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PJ</td>
<td>2.328</td>
<td>2.596</td>
<td>2.621</td>
<td>2.612</td>
<td>2.559</td>
<td>2.559</td>
<td>2.568</td>
<td>2.559</td>
<td>2.612</td>
<td>2.616</td>
<td>2.621</td>
<td>2.696</td>
<td>2.328</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* vorläufig

Quelle: AGEB 09/2017

Tabelle 7.1: Energieverbräuche nach Verkehrsträger und Anstieg im Vergleich zum Basisjahr und zum Vorjahr

<table>
<thead>
<tr>
<th>Verkehrsträger</th>
<th>2016 in PJ</th>
<th>2016 Anteil in %</th>
<th>Änderung ggü. 2015 in %</th>
<th>Änderung ggü. 2005 in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straße</td>
<td>2.241,5</td>
<td>83,1</td>
<td>2,29</td>
<td>4,26</td>
</tr>
<tr>
<td>Luftverkehr*</td>
<td>389,4</td>
<td>14,4</td>
<td>7,52</td>
<td>13,03</td>
</tr>
<tr>
<td>Schiene</td>
<td>52,7</td>
<td>2,0</td>
<td>-2,25</td>
<td>-32,65</td>
</tr>
<tr>
<td>Binnenschiffahrt</td>
<td>12,4</td>
<td>0,5</td>
<td>-7,06</td>
<td>-8,75</td>
</tr>
<tr>
<td>Gesamt</td>
<td>2.696</td>
<td>100</td>
<td>2,87</td>
<td>4,25</td>
</tr>
</tbody>
</table>

Quelle: AGEB 08/2017

* einschließlich internationaler Luftverkehr

Die Zielarchitektur-Studie (siehe Kapitel 2.2) kommt auf Basis der durchgeführten Analysen zu folgendem Szenario: Das Ziel, den Endenergieverbrauch im Verkehrsbereich bis zum Jahr 2020 gegenüber dem Jahr 2005 um 10 Prozent zu senken, wird danach deutlich verfehlt. Die Studie geht davon aus, dass sich der Verbrauch bis 2020 sogar um rund 4,6 Prozent erhöht (innerhalb einer Bandbreite von minus 0,6 bis plus 5,3 Prozent, siehe Abbildung 7.2). Dabei wurde die Wirkung der Maßnahmen im Rahmen der Zielarchitektur berücksichtigt.

Die Verkehrsleistungen im Personen- und Güterverkehr verzeichneten im Jahr 2016 wieder einen deutlichen Anstieg. Um die Verkehrsleistung zu berechnen, werden die beförderten Personen oder Güter mit der insgesamt zurückgelegten Entfernung in einer Periode multipliziert. Die Verkehrsleistung sowohl im Personen- als auch im Güterverkehr ist seit 2005 um 11,0 bzw. 21,7 Prozent gestiegen, gegenüber dem Vorjahr um 2,3 bzw. 0,5 Prozent.

Abbildung 7.2: Reduktion des Endenergieverbrauchs im Verkehrsbereich laut Zielarchitektur-Studie

In PJ

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Prognose 2020 (Min-max-Bandbreite Instrumentenwirkung)</th>
<th>Prognose 2020 (Steuerschätzwert zur Instrumentenwirkung)</th>
<th>tatsächliche Entwicklung bis 2016</th>
<th>Referenzentwicklung (einschl. Instrumente bis 2008)</th>
<th>Ziel 2020 (2328 PJ/-10 %)</th>
<th>Trendfortschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>2.928</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>2.706</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>2.690</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>2.587</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quelle: Prognos, Fraunhofer ISI, DLR 2018

7.2 Alternative Kraftstoffe und innovative Antriebstechnologien

**Elektromobilität ist der Schlüssel für eine erfolgreiche Energiewende im Verkehr.** Elektrische Antriebe ermöglichen den flexiblen Einsatz unterschiedlicher Energieträger und die Rückgewinnung der Energieeffizienz der jeweiligen Energiespeicher bezüglich spezifischer Mobilitätsanwendungen werden entscheidend für deren Anwendung sein.

Der Bestand an Fahrzeugen mit Elektroantrieb steigt rapide an, wenn auch bei insgesamt noch geringen Marktanteilen. Wie Abbildung 7.3 zeigt, waren im Jahr 2016 rund 62.500 mehrspurige Kraftfahrzeuge mit batterieelektrischem Antrieb zugelassen, davon rund 21.000 extern aufladbare Hybride. Ihr Marktanteil lag jedoch weiter bei unter 0,8 Prozent der mehrspurigen Kraftfahrzeuge mit batterieelektrischem Antrieb. Ferner wuchs die Zahl der Elektrofahrzeuge vor allem im Seeverkehr und in der Fußgängerbranche (siehe Kapitel 7.3) wesentlich fortlaufend. Die Weiterentwicklung der MKS rückt solche Bereiche künftig stärker in den Fokus (siehe Kapitel 16).

Mit mehr erneuerbaren Energien wird die Mobilität klimafreundlich. Der Erneuerbaren-Anteil im Verkehr liegt im Jahr 2016 weiterhin bei 5,2 Prozent und soll gesteigert werden (siehe Kapitel 4.4). Voraussetzung dafür ist, dass die Erneuerbaren auch bei der Stromerzeugung stetig zunehmen (siehe Kapitel 4.2). Dies senkt die spezifischen Kohlendioxid-Emissionen des in Elektroautos eingesetzten Stroms.

Regenerativ erzeugte Kraftstoffe werden zunehmend für den Verkehr genutzt. Luft- und Schiffsverkehr können perspektivisch nur durch regenerativ erzeugte Kraftstoffe aus der Abhängigkeit von fossilen Kraftstoffen befreit werden. Da das Biomassepotenzial begrenzt ist, könnte der überwiegende Teil dieser Kraftstoffe auf der Basis von regenerativ...

Die Infrastruktur für alternative Antriebsarten erfordert einen beschleunigten Ausbau und einheitliche Standards. Bei der erforderlichen Schaffung eines bedarfsgerechten Ladeinfrastrukturnetzes für batterieelektrische Fahrzeuge sowie von Wasserstofftankstellen für Brennstoffzellenfahrzeuge wurden zuletzt folgende Fortschritte erzielt:

- Die meisten Ladevorgänge finden zu Hause oder am Arbeitsort statt. Mit diesen privaten Normalladepunkten kann ein Großteil der alltäglichen Wegstrecken bewältigt werden. Für Strecken, die ein Nachladen erfordern, ist eine öffentlich zugängliche Schnellladenetzinfrastruktur notwendig, aktuell gibt es aber noch kein zusammenhängendes und flächendeckendes Schnellladenetz. Laut

Die Bundesregierung will Mobilität nachhaltig und klimaschonend gestalten; dabei soll der Automobilverkehr möglichst ohne Fahrverbote auskommen, gleichzeitig sind Gesundheitsgefahren zu minimieren. Um auf anhaltende Grenzwertüberschreitungen bei Stickstoffoxid (NOx)-Immissionen in Innenstädten zu reagieren, hat die Bundesregierung im Dialog mit der Automobilindustrie, Ländern und Kommunen eine Reihe von Maßnahmen entwickelt, die bis

7.3 Verlagerung auf umweltfreundliche Verkehrsträger

Tabelle 7.2: Reduktion des Endenergieverbrauchs durch Nutzung der Verlagerungspotenziale auf die Schiene

<table>
<thead>
<tr>
<th>Verkehrsträger</th>
<th>Reduktion Endenergieverbrauch in 2030 gemäß Studien DLR in PJ gegenüber 2010</th>
<th>Reduktion CO₂-Emissionen in 2030 gemäß Studien DLR in Mio. t gegenüber 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Güterverkehr</td>
<td>98</td>
<td>8,5</td>
</tr>
<tr>
<td>Personenfernverkehr</td>
<td>15</td>
<td>1,2</td>
</tr>
<tr>
<td>Personennahverkehr</td>
<td>102</td>
<td>8,6</td>
</tr>
<tr>
<td>Summe Verkehr</td>
<td>215</td>
<td>18,3</td>
</tr>
</tbody>
</table>

Quelle: DLR et al. 2016c, d

Abbildung 7.4: Anteil des Schienengüterverkehrs an der gesamten Güterverkehrsleistung

Quelle: Verkehr in Zahlen 2017/2018

7.4 Instrumentenmix im Verkehr

Transparenz und Beteiligung: Forschungsinitiative mFUND und Öffentlichkeitsbeteiligung im Bundesverkehrswegeplan 2030

Forschungsinitiative mFUND
Mit der Forschungsinitiative mFUND stellt das BMVI bis 2020 Fördermittel in Höhe von 150 Millionen Euro für digitale datenbasierte Innovationen für die Mobilität 4.0 zur Verfügung.

- Ziel ist es, Mobilität über alle Verkehrsträger effizienter, sicherer und umweltfreundlicher zu machen und mit offenen Verwaltungsdaten neue Geschäftsfelder zu erschließen.
- In der mFUND-Förderlinie 2 (Projekte bis 3 Millionen Euro Förderung) wurden bisher drei Förderaufrufe veröffentlicht, eine Förderung in Förderlinie 1 (Fördersumme bis 100 Tsd. Euro) kann laufend und ohne Stichtag beantragt werden.
- Die Umsetzung des mFUND wird begleitet von öffentlichkeitswirksamen Veranstaltungen (v. a. mFUND-Konferenzen, Start-up-Pitches, Hackathons) u. Internet-Kommunikation.
- Dabei führt der mFUND kreative Akteure aus Start-ups, Verbänden und Hochschulen zusammen und ermöglicht somit die Vernetzung zwischen Akteuren aus Politik, Wirtschaft und Forschung.
- Somit ist der mFUND ein wichtiger Motor für den Dialogprozess im Verkehrssektor.

Öffentlichkeitsbeteiligung im Bundesverkehrswegeplan 2030

- Ab 2012 erfolgte die Bewertungsphase mit der Prüfung und Bewertung der u. a. auch von Verbänden und Bürgern angemeldeten Projekte.
Weitere zentrale Aussagen des Koalitionsvertrags zwischen CDU, CSU und SPD für die Energiewende im Verkehrsbe­reich

• Fortsetzung des Investitionshochlaufs für die Verkehrsinfrastruktur und dauerhafte Sicherstellung der Überjährig­keit der zur Verfügung gestellten Haushaltsmittel
• Auskömmliche Finanzierung der prioritären Projekte des Bundesverkehrswegeplans 2030
• Verbesserung der Verkehrsverhältnisse in den Gemeinden – Regionalverkehr – (GVFG)
• Fonds „Nachhaltige Mobilität für die Stadt“. Mobilitäts­pläne zur Schadstoffreduktion sowie Förderung der darin verankerten Maßnahmen
• Verkehrsverlagerung bei Pendlern auf die Schiene, u. a. durch P+R
• Stärkung Schiene durch Schienenpakt mit Ziel Verdopp­lung des Personenverkehrs bis 2030 und mehr Schienen­güterverkehr
• Umsetzung des Masterplans SGV
• Realisierung der priorisierten Maßnahmen eines 740-m-Netzes
• Voranreichen der Digitalisierung der Schiene, auch auf hochbelasteten S-Bahnstrecken
• Ausbau der europäischen Leit- und Sicherungstechnik ETCS, elektronischer Stellwerke und Unterstützung der Umrüstung der Lokomotiven durch den Bund
• Unterstützung der Automatisierung des Güterverkehrs und des autonomen Fahrens auf der Schiene durch For­sung und Förderung
• Bis zum Jahr 2025 sollen 70 Prozent des Schienennetzes in Deutschland elektrifiziert sein.
• Senkung der Trassenpreise
• Umsetzung des Deutschland-Takts
• Entwicklung des bundesweiten eTicket im ÖPNV
• Schaffung eines eigenständigen Forschungsprogramms für den Schienenverkehr
• Etablierung eines deutschen Zentrums für Schienenver­kehrsforschung
• Förderung der Lärmforschung an der Schiene sowie Maßnahmen zu mehr Schutz vor Schienenlärm
• Innovationsbonus für die Neuanschaffung und den Umbau von Triebwagen und Lokomotiven
• Investitionen in Elektromobilität, u. a. in Wasserstoff­ und Brennstoffzelle: Unterstützung Batteriezellproduk­tion in Deutschland, Aufbau Ladeinfrastruktur mit 100.000 Ladepunkten bis zum Jahr 2020
• Aufbau einer Batteriezellproduktion in Deutschland
• Stärkung der Wasserstofftechnologie
• LNG-Infrastruktur schaffen
• Nationales Innovationsprogramm Wasserstoff- und Brennstoffzellentechnologie wird fortgeführt.
• Die Sektenkopplung soll vorangebracht und der regula­tive Rahmen geändert werden, damit „grüner Wasser­stoff“ und Wasserstoff als Produkt aus industriellen Prozessen als Kraftstoff oder für die Herstellung kon­ventioneller Kraftstoffe (z. B. Erdgas) genutzt werden kann.
• Abfall- und reststoffbasierte Produktion von Biokraft­stoffen sowie auf Pflanzenbasis
• Elektromobilität (batterieelektrisch, Wasserstoff und Brennstoffzelle) in Deutschland deutlich steigern, u. a. Senkung EEG-Umlage für Batteriebusse, reduzierte Dienstwagenbesteuerung für Elektrofahrzeuge
• Weiterentwicklung der Nationalen Plattform Elektro­mobilität zu einer Nationalen Plattform Zukunft der Mobilität
• Digitale Testfelder auf der Straße (insbesondere in den Städten), Schiene und Wasserstraße
• Open-Data-Anwendungen sollen die Mobilität der Men­schen und den Transport der Waren vereinfachen.
• Technologieoffene Initiativen zugunsten alternativer Antriebe und Energiequellen in der Schifffahrt und in den Häfen (LNG, Wasserstoff/Brennstoffzelle, Methanol, Elektromobilität) sollen verstärkt werden.
• Digitale Technologien und der automatisierte Betrieb in der Schifffahrt, den Häfen und der maritimen Lieferkette sollen vorangetrieben werden.
Zentrale Maßnahmen im Verkehrssektor

Verbrauch/Effizienz/Klimaschutz
- Weiterentwicklung der Mobilitäts- und Kraftstoffstrategie (MKS) 2013
- Neues weltweites Prüfverfahren „World Harmonised Light Vehicle Test Procedure“ (WLTP)
- Strategie automatisiertes und vernetztes Fahren
- Achtes Gesetz zur Änderung des Straßenverkehrs gesetzes
- Maßnahmenplan zur Schaffung von Ethikregeln für Fahrcomputer
- Reform der EU-Verordnungen zur Verringerung der CO₂-Emissionen bei neuen Pkw und leichten Nutzfahrzeugen
- EU-Verordnung zur Verringerung der CO₂-Emissionen bei schweren Nutzfahrzeugen (SNF)
- EU-Verordnung zu nationalen THG-Minderungsbeiträgen außerhalb des ETS 2021–2030 (non-ETS) (siehe Kapitel 3.1)
- Klimaschutzgesetz
- Bildung einer Kommission und Erarbeitung einer Strategie „Zukunft der bezahlbaren und nachhaltigen Mobilität“

Verlagerung auf umweltfreundliche Verkehrsträger
- Förderung von Investitionen in die Schieneninfrastruktur
- Nationaler Radverkehrsplan (NRVP) 2020
- Bundesverkehrswegeplan (BVWP) 2030
- Sofortprogramm Saubere Luft 2017–2020
- Regierungsprogramm Wasserstoff- und Brennstoffzellentechnologie 2016–2026 – von der Marktvorbereitung zu wettbewerbsfähigen Produktionen (NIP 2)
- Förderung des kombinierten Verkehrs
- Verlagerung von Stadt-Umland-Verkehren auf die Schiene fördern – Verbesserung der Luftqualität in den Städten

Elektromobilität – Alternative Kraftstoffe – Tank- und Ladeinfrastruktur
- Marktanreizpaket Elektromobilität
- Förderprogramm „Elektromobilität vor Ort“
- Ladesäulenverordnung I, II und III
- Verordnung über technische Mindestanforderungen an den sicheren und interoperablen Aufbau und Betrieb von öffentlich zugänglichen Ladepunkten für Elektromobile
- Förderrichtlinie Ladeinfrastruktur
- Förderprogramm „Erneuerbar Mobil“
- Zweites Gesetz zur Änderung des Energiesteuer- und des Stromsteuergesetzes
- Runder Tisch Erdgasmobilität
- Forschungsprogramm „Maritime Technologien der nächsten Generation“
- Taskforce LNG in schweren Nutzfahrzeugen
- Projekt H2-Mobility
- Sofortprogramm Saubere Luft 2017–2020
8 Treibhausgasemissionen

Wo stehen wir?

Was ist neu?

<table>
<thead>
<tr>
<th>Treibhausgasemissionen (gegenüber 1990)</th>
<th>2016</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treibhausgasemissionen (-27,3 %*)</td>
<td>-27,3 %*</td>
<td>mindestens -40 %</td>
<td>mindestens -55 %</td>
<td>mindestens -70 %</td>
<td>weitgehend treibhausgasneutral -80 % bis -95 %</td>
</tr>
</tbody>
</table>

*vorläufiger Wert für 2016
8.1 Gesamte Treibhausgasemissionen

Im Vergleich zum Vorjahr gingen die Emissionen der Energiewirtschaft leicht zurück, Verkehr und Haushalte hingegen emittierten deutlich mehr als im Vorjahr. Am stärksten gestiegen sind die Emissionen im Verkehrssektor: Hier sind es 4 Millionen t mehr als 2015, ein Plus von 2,5 Prozent. Der Anstieg der Verkehrsemissionen geht vor allem darauf zurück, dass der Straßengüterverkehr um 2,8 Prozent und der Pkw-Verkehr um 2 Prozent gewachsen ist. Bei den privaten Haushalten machte sich neben der im Vergleich zum Vorjahr

Abbildung 8.1: Zielsteckbrief: Treibhausgasemissionen in Deutschland

| Ziel 2020 | Reduktion der Treibhausgasemissionen um mindestens 40 Prozent (ggü. 1990) |
| Status 2016 | -27,3 Prozent |

in Mio. t CO₂-Äquivalente

| 1.252 | 1.126 | 1.080 | 1.019 | 1.000 | 943 | 903 | 909 | 749 |

Quelle: UBA 12/2017

Trend

Maßnahmen Aktionsprogramm Klimaschutz 2020

Die Witterung, niedrige Rohstoffpreise und hohe Stromexportüberschüsse hatten einen großen Einfluss auf die Klimabilanz 2016. Eine im Vergleich zum Vorjahr kühlere Witterung und demzufolge mehr benötigte Heizenergie sowie günstigere Kraftstoffpreise haben 2016 zu einem leicht geänderten Wirtschaftssystem, der Treibhausgasemissionen gestiegen. Hohe Stromimportüberschüsse an der Küste haben zu einem höheren Kohlenstoffanteil der Emissionen beigetragen, was die Minderung der Kohlenstoffemissionen im Stromsektor trotz des Ausbaus der erneuerbaren Energien deutlicher zurückginge.

Im Vergleich der einzelnen Treibhausgase dominierte CO₂, vor allem durch die Verbrennung von fossilen Brennstoffen, die Trocken- und Flächenerosion sowie die Verwesung von organischen Substanzen. Im Jahr 2016 machten CO₂-Emissionen etwa 4,2 Prozent und Methanemissionen (CH₄) etwa 3,6 Prozent der gesamten Treibhausgasemissionen aus. Die fluorierten Treibhausgase machten wiederum etwa 1,7 Prozent aus. Dieses Verteilungsspektrum der Treibhausgasemissionen ist typisch für ein hoch industrialisiertes Land.

8.2 Energiebedingte Treibhausgasemissionen

Der Ausstoß energiebedingter Treibhausgase ist nach Berech­nungen des Umweltbundesamtes in Deutschland im Jahr 2016 erneut gegenüber dem Vorjahr um etwa 3,8 Millionen t CO₂-Äquivalente (etwa 0,5 Prozent) leicht auf 772 Millionen t CO₂-Äquivalente gestiegen. Somit verursacht der Energie­sektor (Verbrennungsprozesse Energiewirtschaft, diffuse Emissionen sowie zusätzliche Emissionen Gewerbe, Hei­zungsanlagen und Fahrzeuge – siehe Glossar) fast 85 Pro­zent der gesamten Treibhausgasemissionen. Da diese aber zu etwa 98 Prozent durch die Freisetzung von Kohlendioxid verursacht werden, setzen die nachfolgenden Analysen und Bewertungen ihren Schwerpunkt auf CO₂. Die energiebe­dingten CO₂-Emissionen verursachten etwa 96 Prozent des gesamten CO₂-Ausstoßes (siehe Abbildung 8.3). Ebenso wie

Abbildung 8.2: Energiebedingte CO₂-Emissionen der Sektoren Strom, Wärme, Verkehr sowie diffuse Emissionen in Mio. t CO₂

Abbildung 8.3: Treibhausgasemissionen nach Quellgruppen in Mio. t CO₂-Äquivalente

* 2016 vorläufige Werte auf Grundlage des PEV und der Produktionsentwicklung

Quelle: UBA 04/2017

Quelle: UBA 12/2017
Durch erneuerbare Energien vermiedene Treibhausgasemissionen

Im Strom- und Wärmesektor wird das Ergebnis maßgeblich dadurch beeinflusst, welche fossilen bzw. nuklearen Brennstoffe ersetzt werden. Bei der energetischen Nutzung von Biomasse sind zusätzlich die Art und Herkunft der verwendeten Rohstoffe ausschlaggebend für die Emissionsbilanz.

Die Methodik (Abbildungen 8.4 und 8.5) zur Berechnung der verwendeten Emissionen durch erneuerbare Energien orientiert sich an den Vorgaben der Erneuerbare-Energien-Richtlinie der EU (RL 2009/28/EG).
der gesamte Kohlendioxydausstoß Deutschlands erhöht sich die energiebedingten CO₂-Emissionen um etwa 1 Pro-
zent im Vergleich zum Vorjahr.

Die CO₂-Emissionen des Energiesektors sind seit 1990 deut-
lich gesunken. Während die energiebedingten CO₂-Emis-
sionen in der Langfristperspektive weiterhin einem rück-
läufigen Trend folgen, verzeichneten sie 2016 gegenüber
dem Vorjahr 2015 einen leichten Anstieg um etwa 0,5 Pro-
zent auf 772 Millionen t (siehe Abbildung 8.2). Damit stell-
ten sie den Großteil der insgesamt 802 Millionen t CO₂-
Emissionen im Jahr 2016 dar.

Der überwiegende Teil dieser energiebedingten CO₂-Emis-
sionen stammte aus der Verbrennung fossiler Brennstoffe
der Erzeugung von Strom und Wärme sowie im Verkehr.
Der Anstieg im Jahr 2016 insgesamt ist im Wesentlichen auf
einen Mehrausstoß im Verkehrssektor und bei den Haus-
halten und Kleinverbrauchern zurückzuführen. Die CO₂-
Emissionen bei der Stromerzeugung gingen hingegen um
etwa 5 Millionen t CO₂ zurück. Die sonstigen energiebe-
dingten Emissionen, die sich aus diffusen Emissionen bspw.
durch Leitungsverluste zusammensetzen, blieben im Ver-
gleich zum Vorjahr etwa konstant bei etwas mehr als 2 Mil-
lionen t CO₂.

Witterungsbereinigt lagen die CO₂-Emissionen, die das Gros
der energiebedingten Treibhausgasemissionen ausmachen,
oberhalb der realen Emissionen. Nach Berechnungen des
UBA auf Basis von DIW (1995) lagen die temperaturberei-
nigten energiebedingten CO₂-Emissionen (Verbrennung
von fossilen Brennstoffen und diffuse Emissionen, Quell-
gruppen 1A und 1B) im Jahr 2016 bei 765,3 Millionen t
(2015: 762,6 Millionen t) und damit oberhalb der realen
Emissionen von 751,7 Millionen t in 2016 (2015: 747,5 Mil-
lionen t). Der witterungsbedingte Wert wird hier nur nach-
richtlich genannt und hat keine Relevanz für die Zielerrei-
chung, da diese über die realen Emissionen bewertet wird.

8.3 Treibhausgasemissionen und
Wirtschaftsleistung

Die Treibhausgasemissionen sind im Verhältnis zur Wirt-
schaftsleistung insgesamt weiter gesunken. Während 1990
je Milliarde Euro Bruttoinlandsprodukt rund 0,65 Milio-
nen t CO₂-Aquivalente an Treibhausgasen freigesetzt wur-
den, waren es im Jahr 2016 nur noch 0,37 Millionen t CO₂-
Äquivalente. Das ist ein Rückgang von rund 65 Prozent.
Auch die spezifischen Treibhausgasemissionen pro Ein-
wohner sind zwischen 1990 und 2016 um circa 28 Prozent
von 15,7 t auf 11,3 t CO₂-Aquivalente zurückgegangen
(siehe Abbildung 8.6). In der EU-28 sind die spezifischen
Treibhausgasemissionen pro Einwohner zwischen 1991
und 2015 um 25,5 Prozent von 11,72 auf 8,74 t CO₂-Aqua-
valente gesunken.

8.4 Aktionsprogramm Klimaschutz 2020 und
Klimaschutzplan 2050

Das Aktionsprogramm Klimaschutz 2020 ist das zentrale
Instrument zur Deckung der mit dem Projektionsbericht
2013 identifizierten Differenz zum Zielwert 2020. Das Akti-
onsprogramm sollte einen Beitrag im Umfang von 62 bis
78 Millionen t CO₂-Aquivalente leisten, um das Klimaschutz-
ziel für 2020 zu erreichen. Dieser Gesamtbeitrag stützt sich
dabei auf Beiträge aus mehr als 110 Einzelmaßnahmen.

Tabelle 8.1: Beiträge der zentralen politischen Maßnahmen zum Erreichen des 40-Prozent-Ziels

<table>
<thead>
<tr>
<th>Zentrale politische Maßnahmen</th>
<th>Beitrag nach ursprünglicher Schätzung, Stand Dezember 2014</th>
<th>Beitrag nach aktueller gutachterlicher Schätzung (gerundete Werte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nationaler Aktionsplan Energieeffizienz (NAPE) ohne Maßnahmen im Verkehrssektor</td>
<td>circa 25 bis 30 (einschließlich Energieeffizienz Gebäude)</td>
<td>19 bis 26 (einschließlich Energieeffizienz Gebäude)</td>
</tr>
<tr>
<td>Strategie „Klimafreundliches Bauen und Wohnen“ und energetische Sanierungsfahrpläne Bund, Länder und Kommunen</td>
<td>Gesamt circa 5,7 bis 10 (davon 1,5 bis 4,7 zusätzlich zu NAPE)</td>
<td>Gesamt 3,2 bis 3,8 (davon 0,8 zusätzlich zu NAPE)</td>
</tr>
<tr>
<td>Maßnahmen im Verkehrssektor</td>
<td>circa 7 bis 10</td>
<td>1,1 bis 2</td>
</tr>
<tr>
<td>Minderung von nicht energiebedingten Emissionen in den Sektoren:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrie, GHD</td>
<td>2,5 bis 5,2</td>
<td>1,3 bis 1,8</td>
</tr>
<tr>
<td>Abfallwirtschaft</td>
<td>0,5 bis 2,5</td>
<td>0,16</td>
</tr>
<tr>
<td>Landwirtschaft*</td>
<td>3,6</td>
<td>0,6 bis 2,2</td>
</tr>
<tr>
<td>Reform des Emissionshandels</td>
<td>Auswirkungen der jüngsten Reformen sind hier noch nicht abgebildet</td>
<td></td>
</tr>
<tr>
<td>Weitere Maßnahmen, insbesondere im Stromsektor</td>
<td>22</td>
<td>16,4 bis 18,4</td>
</tr>
<tr>
<td>Beratung, Aufklärung und Eigeninitiative für mehr Klimaschutz</td>
<td>0,48</td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>62 bis 78</td>
<td>40 bis 58</td>
</tr>
</tbody>
</table>

Quelle: Klimaschutzbericht 2017

Transparenz und Beteiligung: Aktionsbündnis Klimaschutz

Zentrale Maßnahmen im Bereich Klimaschutz

- Maßnahmen zur Erreichung des 40-Prozent-Ziels (siehe Tabelle 8.1)
- Klimaschutzplan 2050 und vorgesehenes Maßnahmenprogramm 2030 (siehe Kapitel 8.4)
Teil II: Ziele und Rahmenbedingungen der Energiewende

Dieser Teil des Monitoring-Berichts behandelt weitere Ziele und den energiepolitischen Rahmen, in dem die Energiewende umgesetzt wird. Im Einzelnen geht dieser Teil auf die folgenden Themen ein:

Kraftwerke und Versorgungssicherheit
Bezahlbare Energie und faire Wettbewerbsbedingungen
Umweltverträglichkeit der Energieversorgung
Netzinfrastruktur
Integrierte Entwicklung des Energiesystems
Energieforschung und Innovationen
Investitionen, Wachstum und Beschäftigung
9 Kraftwerke und Versorgungssicherheit

Wo stehen wir?

Deutschlands Stromversorgung ist sicher. Die Energienachfrage in Deutschland ist jederzeit gedeckt, so dass ein hohes Maß an Versorgungssicherheit gewährleistet ist.

Die installierte Leistung aus erneuerbaren Energien ist erneut kräftig angestiegen. Erneuerbare Energien decken rund die Hälfte der Kraftwerkskapazität ab.

Das im Juli 2016 in Kraft getretene Strommarktgesetz hat den Strommarkt zu einem Strommarkt 2.0 weiterentwickelt.

Das Strommarktgesetz hat auch das Monitoring der Versorgungssicherheit am Strommarkt weiterentwickelt.

Was ist neu?

Seit Juli 2017 ist SMARD, die Informationsplattform zum Strommarkt, online. Sie bietet aktuelle und verständlich aufbereitete Strommarktdaten und stärkt damit die Transparenz am Strommarkt. Die Inbetriebnahme des Marktstammdatenregisters ist für Dezember 2018 geplant.

<table>
<thead>
<tr>
<th>Versorgungssicherheit</th>
<th>Die Energienachfrage in Deutschland jederzeit effizient decken.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernenergieausstieg</td>
<td>Die letzten Kernkraftwerke mit dem Ablauf des Jahres 2022 abschalten.</td>
</tr>
</tbody>
</table>
9.1 Kraftwerke

KRAFTWERKE UND VERSORGUNGSSICHERHEIT

Darum, die KWK CO₂-ärmer auszugestalten und zu flexibilisieren, so dass sie im Rahmen der Energiewende eine Zukunft hat. Dies unterstreicht auch der Koalitionsvertrag zwischen CDU, CSU und SPD.

Zwischen den Jahren 2017 und 2020 werden die vorhandenen Überkapazitäten bei den konventionellen Kraftwerkskapazitäten voraussichtlich etwas verringert. Die Gesamt-

Abbildung 9.2: Verteilung aller Kraftwerkskapazitäten auf die Bundesländer

Quelle: BNetzA 11/2017

Angabe der gesamt installierten Leistung in GW
KRAFTWERKE UND VERSORGUNGSSICHERHEIT

9

Kraftwerke und Versorgungssicherheit

106

Bis Oktober 2019 werden 13 Prozent der Braunkohlekraftwerksblöcke in eine Sicherheitsbereitschaft überführt. Das Strommarktgesetz sieht eine schrittweise Stilllegung von Braunkohlekraftwerksblöcken in einem Umfang von 2,7 GW Netto-Nennleistung vor. Diese werden vor der endgültigen Stilllegung zunächst für vier Jahre in eine Sicherheitsbereitschaft überführt, auf die als letzte Absicherung der Stromversorgung zurückgegriffen werden kann. Bis Oktober 2017 waren bereits drei der für die Sicherheitsbereitschaft vorgesehenen Kraftwerksblöcke vorläufig stillgelegt. Die Sicherheitsbereitschaft soll eine Emissionseinsparung von 12,5 Millionen t CO₂ bis zum Jahr 2020 erbringen. Dieser Minderungsbetrag ist ein wichtiger Beitrag zum Klimaschutz. Sollte die Maßnahme nicht die angestrebte Einsparung von 12,5 Millionen t CO₂ erzielen, werden die Kraftwerksbetreiber eine zusätzliche Einsparung in Höhe von insgesamt bis zu 1,5 Millionen t CO₂ pro Jahr, beginnend im Jahr 2019, erbringen müssen.

Seit Juli 2017 ist die neue Informationsplattform SMARD der Bundesnetzagentur online und stärkt die Transparenz am Strommarkt. Unter www.smard.de lassen sich die zentralen Strommarktdaten für Deutschland und teilweise auch für Europa nahezu in Echtzeit abrufen, anschaulich in Grafiken darstellen und herunterladen. Erzeugung, Verbrauch, Großhandelspreise, Im- und Export sowie Daten zu Regelenergie können für unterschiedliche Zeiträume ermittelt und in Grafiken visualisiert werden. SMARD richtet sich sowohl an Bürger, die sich für die Energiewende und den Strommarkt interessieren, als auch an Fachleute aus dem Energiebereich, in Unternehmen und der Wissenschaft. SMARD ermöglicht einen einfachen Zugang zu Informationen und trägt zu einer sachlichen Diskussion über die Energiewende und den Strommarkt bei.

Abbildung 9.3: Prognostizierter Zu- und Rückbau konventioneller Erzeugungskapazitäten (inklusive Pumpspeicher) im Zeitraum von 2017 bis 2020 unterteilt nach Deutschland und Süddeutschland

in MW

<table>
<thead>
<tr>
<th>Saldo Süd-DE</th>
<th>Rückbau Süd-DE</th>
<th>Zubau Süd-DE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.605</td>
<td>-3.131</td>
<td>-2.129</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Saldo DE</th>
<th>Rückbau DE</th>
<th>Zubau DE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.474</td>
<td>-2.129</td>
<td>2.345</td>
</tr>
</tbody>
</table>

Quelle: BNetzA 11/2017

Die Angaben für Rückbau berücksichtigen Kraftwerke, die endgültig gemäß StA § 13a EnWG stillgelegt werden, sowie Kernkraftwerke. Angegeben ist jeweils die Netto-Nennleistung.

Zu mehr Transparenz am Strommarkt wird auch das Marktstammdatenregister (MaStR) beitragen. Die Marktstammdatenregister-Verordnung ist im Juli 2017 in Kraft getreten. Das Register soll die Stammdaten aller Anlagen der leitungsgebundenen Energieversorgung im Strom- und Gasmarkt in Deutschland sowie von Marktteilnehmern in Form einer einheitlichen online-basierten Datenbank zusammenführen. Meldepflichten werden vereinfacht und reduziert. Die Daten des MaStR sollen zudem auf SMARD veröffentlicht werden. Die BNetzA plant, das MaStR im Dezember 2018 in Betrieb zu nehmen.

Speicher als Beitrag zu einem flexibleren Stromsystem

9.2 Versorgungssicherheit

Das Monitoring der Versorgungssicherheit am Strommarkt wird weiterentwickelt. Mit Inkrafttreten des Strommarktgesetzes 2016 wurde der bisherige Bericht zur deutschen Leistungsbilanz durch eine Methode ersetzt, die die Anforderungen an die Versorgungssicherheit im Strommarkt weiterentwickelt. Die neue Methode berücksichtigt die Einbettung des deutschen Stromsystems in den europäischen Strominnenmarkt, bezieht Weiterentwicklungen auf dem Gebiet der wahrscheinlichkeitsbasierten Analyse ein und bildet insgesamt die Rahmenbedingungen des reformierten Strommarktes 2.0 expliziter ab. Das Energiewirtschaftsgesetz sieht in § 51 vor, dass das BMWi fortlaufend ein Monitoring
Versorgung mit Erdgas

Zusammenfassend bieten das weit verzweigte Erdgasnetz, die liquiden Handelsmärkte, das große Speichervolumen und das diversifizierte Portfolio an Lieferländern und Importinfrastrukturen den deutschen Gasverbrauchern ein sehr hohes Niveau an Versorgungssicherheit. Hinzu kommt der gute technische Zustand der Erdgasinfrastruktur, der sich im SAIDI-Gas (System Average Interruption Duration Index) widerspiegelt. Er hatte im Jahr 2016 einen Wert von 1,03. Nähere Informationen zur Erdgasversorgung in Deutschland finden sich im jährlichen Bericht des Bundesministeriums für Wirtschaft und Energie über die Versorgungssicherheit bei Erdgas (BMWi 2017a).

der Versorgungssicherheit auch nach diesen Maßstäben durchführt. Zusätzlich hat das BMWi auf einen gemeinsamen Versorgungssicherheitsbericht mit den Nachbarstaaten der Europäischen Union hinzuzwirken.

Auch in den Stromnetzen ist Versorgungssicherheit gegeben. Voraussetzung für die Versorgung der Verbraucher ist die sichere Verfügbarkeit ausreichend bemessener Übertragungs- und Verteilernetzkapazitäten. Um auch die Stabilität der Netze auf der ÜbertragungsEbene trotz des stockenden Netzausbaus zu gewährleisten, müssen die Netzbetreiber allerdings zunehmend häufiger Maßnahmen zur Gewährleistung der Systemstabilität anwenden (siehe Kapitel 12.4).

9.3 Ausstieg aus der Kernenergie

9.4 Strommarktdesign

Tabelle 9.1: Fahrplan zum Ausstieg aus der Nutzung der Kernenergie zur Stromerzeugung

<table>
<thead>
<tr>
<th>Name</th>
<th>Abschaltung bis</th>
<th>Brutto-Nennleistung (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philippsburg 2</td>
<td>2019</td>
<td>1.402</td>
</tr>
<tr>
<td>Grohnde</td>
<td>2021</td>
<td>1.360</td>
</tr>
<tr>
<td>Gundremmingen C</td>
<td></td>
<td>1.288</td>
</tr>
<tr>
<td>Brokdorf</td>
<td></td>
<td>1.410</td>
</tr>
<tr>
<td>Isar 2</td>
<td>2022</td>
<td>1.410</td>
</tr>
<tr>
<td>Emsland</td>
<td></td>
<td>1.336</td>
</tr>
<tr>
<td>Neckarwestheim 2</td>
<td></td>
<td>1.310</td>
</tr>
</tbody>
</table>

Quelle: BNetzA 02/2018

10 Bezahlbare Energie und faire Wettbewerbsbedingungen

Wo stehen wir?

Die Ausgaben für Strom gemessen am Bruttoinlandsprodukt sanken im Jahr 2016 auf den niedrigsten Stand seit 2010.

Nach einem Rückgang im Jahr zuvor sind die Strompreise für Haushaltskunden 2016 um 2,4 Prozent gestiegen. Im Jahr 2017 lagen die Preise annähernd auf dem Niveau des Vorjahres.

Für Industriekunden, die nicht unter Entlastungsregelungen fallen, gingen die Strompreise im Jahr 2016 um 4,0 Prozent zurück, wobei 2017 die Strompreise wieder um 4,9 Prozent gestiegen sind.

Wachstum und Beschäftigung in Deutschland erfordern leistungsstarke und internation wettbewerbsfähige Unternehmen. Entlastungsregelungen bei Energiepreisen und -kosten leisten weiterhin einen unverzichtbaren Beitrag zum Erhalt des Industriestandorts Deutschland.

Was ist neu?

10.1 Letztverbraucherausgaben für Energie

Die Letztverbraucherausgaben für Strom gingen im Jahr 2016 gegenüber dem Vorjahr zurück, und zwar von 75,3 auf 74,1 Milliarden Euro (siehe Tabelle 10.1). Dies entspricht einem Rückgang um 1,6 Prozent. Dies beruht auf den marktgetriebenen Elementen der Strompreise. Dagegen stiegen die Ausgaben, die auf staatlich induzierte und regulierte

gesamtwirtschaftliche Ausgaben für Primärenergie

Einfluss auf die Letztverbraucherausgaben für Energie haben auch die Ausgaben für die Bereitstellung von Primärenergie. Diese sind im Jahr 2016 gegenüber dem Vorjahr erneut zurückgegangen und zwar um 10,6 Prozent auf rund 80 Milliarden Euro (Abbildung 10.1). Dies ist vor allem auf den deutlichen Rückgang der Importpreise für fossile Rohstoffe zurückzuführen. So sind die Energiekosten durch den Verbrauch importierter fossiler Primärenergieträger von rund 54,8 auf rund 45,9 Milliarden Euro gefallen.

Abbildung 10.1: Gesamtwirtschaftliche Ausgaben für die Bereitstellung von Primärenergie in Mrd. Euro

Quelle: BMWi, eigene Berechnungen auf Basis AGEB und BAFA 10/2017

Gemessen am Bruttoinlandsprodukt sank der Anteil der Ausgaben für Strom im Jahr 2016 um rund 4,7 Prozent auf den niedrigsten Stand seit 2010. Im Jahr 2016 lag der Anteil der Letztverbraucherausgaben für Strom bezogen auf das nominale Bruttoinlandsprodukt bei 2,4 Prozent, gegenüber 2,5 Prozent im Jahr 2015 (siehe Abbildung 10.2).

Tabelle 10.1: Letztverbraucherausgaben für Strom in Milliarden Euro

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtausgaben (in Mrd. Euro)</td>
<td>65,6</td>
<td>68,6</td>
<td>69,4</td>
<td>76,7</td>
<td>76,0</td>
<td>75,3</td>
<td>74,1</td>
</tr>
<tr>
<td>Staatlich induzierte Elemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davon:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mehrwertsteuer</td>
<td>21,9</td>
<td>27,9</td>
<td>28,4</td>
<td>35,6</td>
<td>37,9</td>
<td>37,1</td>
<td>38,4</td>
</tr>
<tr>
<td>Stromsteuer</td>
<td>6,4</td>
<td>7,2</td>
<td>7,0</td>
<td>7,0</td>
<td>6,6</td>
<td>6,6</td>
<td>6,5</td>
</tr>
<tr>
<td>Konzessionsabgabe</td>
<td>2,1</td>
<td>2,2</td>
<td>2,1</td>
<td>2,1</td>
<td>2,0</td>
<td>2,0</td>
<td>2,0</td>
</tr>
<tr>
<td>EEG-Umlage</td>
<td>8,3</td>
<td>13,4</td>
<td>14,0</td>
<td>19,8</td>
<td>22,3</td>
<td>22,0</td>
<td>22,7</td>
</tr>
<tr>
<td>Umlage nach KWKG</td>
<td>0,4</td>
<td>0,2</td>
<td>0,3</td>
<td>0,4</td>
<td>0,5</td>
<td>0,6</td>
<td>1,3</td>
</tr>
<tr>
<td>Offshore-Haftungsumlage und Umlage für abschaltbare Lasten</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,7</td>
<td>0,8</td>
<td>0,0</td>
<td>0,2</td>
</tr>
<tr>
<td>Staatlich regulierte Elemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davon:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netzentgelte Übertragungsnetz</td>
<td>16,9</td>
<td>17,6</td>
<td>19,0</td>
<td>21,2</td>
<td>21,4</td>
<td>21,4</td>
<td>22,3</td>
</tr>
<tr>
<td>Netzentgelte Verteilnetz</td>
<td>2,2</td>
<td>2,2</td>
<td>2,6</td>
<td>3,0</td>
<td>3,1</td>
<td>3,5</td>
<td>3,8</td>
</tr>
<tr>
<td>Staatlich regulierte Elemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davon:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netzentgelte Übertragungsnetz</td>
<td>14,7</td>
<td>15,4</td>
<td>16,4</td>
<td>18,2</td>
<td>18,3</td>
<td>17,9</td>
<td>18,5</td>
</tr>
<tr>
<td>Marktgetriebene Elemente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davon:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marktwert EEG-Strom</td>
<td>26,8</td>
<td>23,1</td>
<td>22,0</td>
<td>19,8</td>
<td>16,6</td>
<td>16,8</td>
<td>13,4</td>
</tr>
<tr>
<td>Erzeugung und Vertrieb</td>
<td>3,5</td>
<td>4,4</td>
<td>4,8</td>
<td>4,2</td>
<td>4,1</td>
<td>4,7</td>
<td>4,3</td>
</tr>
</tbody>
</table>

Abbildung 10.2: Anteil Letztverbraucherausgaben für Strom am Bruttoinlandsprodukt in Prozent

Quelle: eigene Berechnungen auf Basis StBA und Untersuchungen der Expertenkommision zum Monitoring-Prozess „Energie der Zukunft“
Debatte zu Kosten der Energiewende

Aussagen zu Kosten der Energiewende erreichen mit Recht eine hohe öffentliche Aufmerksamkeit, weil sie eng mit dem Ziel zusammenhängen, dass Energie bezahlbar bleibt und die Wettbewerbsfähigkeit Deutschlands gesichert ist. Dabei wird allerdings nicht selten ein Kostenbegriff verwendet, der lediglich die finanzielle Höhe eines bestimmten energiepolitischen Eingriffs, wie z. B. das EEG und die EEG-Umlage, beschreibt. Der Umbau des Energiesystems wird aber von einer Reihe von Maßnahmen begleitet, die anfangs vor allem den Stromsektor betrafen, aber zunehmend auch die Transformation im Wärmesektor und Verkehrssektor sowie deren Wechselwirkungen (Sektorkopplung) in den Blick genommen haben. Auch wenn es keinen formalen Beschluss zum Start einer Energiewende in Deutschland gegeben hat, so markieren die gesetzlichen Regelungen aus den Jahren 1999 bis 2002 zum Stromsteuergesetz, zum EEG und zum Atomgesetz rückblickend einen wichtigen Ausgangspunkt.

Bei jeder einzelnen Maßnahme kommt es darauf an, eine wirtschaftliche Umsetzung zu finden, die eine kosteneffiziente Zielerreichung ermöglicht und die Bezahlabilität für alle Letztverbraucher gewährleistet. Wirkungsanalysen leisten hierbei wichtige Hilfestellungen und können Aussagen zu einzelnen Kostenpositionen des heutigen Stromsystems bzw. zu Bestandteilen von Energiepreisen umfassen.

Für die Bundesregierung gehört die Bezahlabilität zu den Leitkriterien bei einer optimierten Umsetzung der Energiewende. So konnte beispielsweise die Kostendynamik bei der EEG-Umlage dank verschiedener Novellen in den letzten Jahren spürbar abgebremst werden. Im Rahmen der oben dargelegten Möglichkeiten und Herausforderungen trägt das Monitoring der Energiewende zu einer erweiterten und vertieften Kostenbetrachtung bei.

10.2 Bezahlbare Energie für private Haushalte

Die Ausgaben privater Haushalte für Energie gingen im Jahr 2016 zurück. Im Durchschnitt gab ein Haushalt 2016 rund 2.681 Euro für Energie aus (siehe Abbildung 10.3), ein Rückgang um 2,4 Prozent gegenüber dem Vorjahr. Die Ausgaben für Kraftstoffe sanken mit 5,9 Prozent am deutlichsten. Für Beleuchtung gaben Haushalte im Durchschnitt 1,6 Prozent weniger aus als im Vorjahr, während die Ausgaben für Heizung etwa konstant blieben. Die durchschnittlichen Ausgaben für Prozesswärme, die zum Beispiel zum Kochen verwendet wird, stiegen dagegen um rund 2,4 Prozent.

ters Geld sparen.

Die Entwicklung der Verbraucherpreise für Erdöl und Erdgas ist vor allem auf die auch im Jahr 2016 rückläufigen Rohstoffpreise an den internationalen Rohstoffmärkten zurückzuführen. So gingen die Einfuhrpreise für Erdöl gegenüber 2015 um 24 Prozent zurück, die Einfuhrpreise für Rohöl sanken um 20 Prozent.

Abbildung 10.3: Durchschnittliche jährliche Energieausgaben privater Haushalte

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Kraftstoffe und Schmiermittel</th>
<th>Licht und Sonstiges</th>
<th>Prozesswärme (Kochen)</th>
<th>Wärme und warmes Wasser</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>2.752</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>2.507</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>2.712</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>2.841</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>3.081</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>3.143</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>2.889</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2.746</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>2.681</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quelle: BMWi auf Basis StBA und AGEB 11/2017
10 BEZAHLBARE ENERGIE UND FAIRE WETTBEWERBSBEDINGUNGEN

10.3 Bezahlbare Energie für die Industrie

Abbildung 10.4: Durchschnittliche Strompreise privater Haushalte in ct/kWh

![Abbildung 10.4](image-url)

Zentrale Maßnahmen im Bereich bezahlbare Energie für private Haushalte und Industrie

Rechtsvorschriften

Im Juli 2017 ist das Netzentgeltdenoviersungsgez (NEV) in Kraft getreten, das auch ein Abschmelzen der vermiedenen Netzentgelte regelt. Von 2017 auf 2018 sind die Kosten für vermiedene Netzentgelte in den Stromverteilernetzen um insgesamt über 1 Milliarde Euro gesunken, was eine entsprechende Entlastung für die Stromverbraucher zur Folge hatte. Beide Maßnahmen können also spürbar dazu beitragen, die durch Betrieb, Modernisierung und Ausbau des Stromnetzes für Letztverbraucher entstehenden Kosten zu dämpfen (siehe Kapitel 12).

Mit der Verordnung zur transparenten Ausweisung staatlich gesetzter oder regulierter Preisbestandteile in der Strom- und Gasversorgung hat die Bundesregierung die Transparenz für Verbraucher gestärkt und so den Vergleich der Tarife erleichtert. Anbieterwechsel können helfen, Energieausgaben zu senken.

Andere Maßnahmen

Ein effizienter Einsatz von Energie und Energieeinsparungen ist die Grundlage für sinkende Energieausgaben in der Zukunft. Dazu hat die Bundesregierung insbesondere auf den Weg gebracht:

- **Nationaler Aktionsplan Energieeffizienz (NAPE)**
- **Informationskampagne „Deutschland macht’s effizient“** (siehe Kapitel 5)
- **Energieeffizienzstrategie Gebäude (ESG)**

Da Deutschland trotz der Fortschritte bei der Energiewende zumindest mittelfristig bei fossilen Energieträgern weiter von Importen abhängig bleibt, hängen die Energiekosten auch stark von den Importpreisen ab. Auch um zu einer stabilen Entwicklung der Importpreise beizutragen, wird Deutschlands internationale Energipolitik weiter darauf abzielen, Energieverbraucher und Energieführer und Transportrouten so weit wie möglich zu diversifizieren (siehe Kapitel 3).
10.3 Bezahlbare Energie für die Industrie

Abbildung 10.5: Energiekosten der Industrie in Mrd. Euro

Quelle: BMWi auf Basis AGEB und StBA 10/2017
Börsenstrompreise

Abbildung 10.6: Börsenstrompreise im Spotmarkt und Terminhandel in Euro/MWh

Quelle: EEX 03/2018, Monatsmittelwerte für Produkte Day Base (Stundenkontrakte) und Phelix-Futures (Baseload, Year Future)
10.4 Bezahlbare Energie für eine wettbewerbsfähige Wirtschaft

Die Kraftstoff- und Erdgaspreise lagen in Deutschland im Jahr 2016 auf einem ähnlichen Niveau wie im EU-Durchschnitt. Die Preise für Diesel-Kraftstoffe zum Beispiel lagen 1,0 Prozent unter dem EU-Durchschnitt. Gaspreise für Industriekunden in Deutschland lagen knapp 8,5 Prozent über dem europäischen Mittel.

Entlastungsregelungen leisten einen unverzichtbaren Beitrag zum Erhalt des Industriestandorts Deutschland und liegen im gesamtwirtschaftlichen Interesse. Für die Bundesregierung steht fest, dass die internationale Wettbewerbsfähigkeit der deutschen Industrie nicht gefährdet werden darf. Ziel bleibt, die Abwanderung von Unternehmen in Länder mit niedrigeren Umweltstandards bzw. geringeren Abgaben auf Energie („Carbon Leakage“) zu vermeiden sowie geschlossene Wertschöpfungsketten und industrielle
Arbeitsplätze in Deutschland dauerhaft zu sichern. Die Ausnahmeregelungen im EEG und KWKG bedeuten entsprechend höhere Strompreise für private Haushalte und nicht-privilegierte Unternehmen. Auf Basis der aktuellen Jahresabrechnung wurde die Entlastungswirkung durch die Besondere Ausgleichsregelung im Jahr 2016 mit 1,46 ct/kWh bzw. 23,0 Prozent der EEG-Umlage finanziert.

Energiestückkosten

Zentrale Maßnahmen im Bereich faire Wettbewerbsbedingungen

- Besondere Ausgleichsregelung sowie Entlastungsregelungen für Eigenverbrauch im EEG
- Ermäßigungen bei der KWKG-Umlage
- Entlastungen im Energie- und Stromsteuergesetz, z.B. Spitzenausgleich
- teilweise freie Zuteilung im EU-Emissionshandelssystem (siehe Kapitel 3)
- Entlastungen bei den Netzentgelten
11 Umweltverträglichkeit der Energieversorgung

Wo stehen wir?

Mit der Energiewende sind sowohl entlastende Wirkungen für die Umwelt und Synergieeffekte für eine nachhaltige Energiewirtschaft als auch mögliche neue Umwelt- und Gesundheitseffekte sowie Eingriffe in Natur und Landschaft verbunden.

Um die Veränderungen des Umweltzustandes durch die Energiewende fachlich fundiert darzustellen, wird derzeit ein geeigneter Indikatorensatz erarbeitet. Ziel ist es, auf Grundlage eines kontinuierlichen, wissenschaftlich begleiteten Monitorings mögliche schädliche Umweltwirkungen frühzeitig zu identifizieren und so weit wie möglich zu vermeiden.

Was ist neu?

Der erste Stickstoff-Bericht der Bundesregierung vom Mai 2017 unterstreicht die Notwendigkeit, den Stickstoffeintrag durch einen sektorenübergreifenden Ansatz auf ein umwelt- und gesundheitsverträgliches Maß zu reduzieren.

Aufbauend auf den Ergebnissen dieser Studien soll das künftige umweltbezogene Monitoring der Energiewende schrittweise entwickelt werden. Wie in den nachfolgenden Unterkapiteln näher dargestellt, soll es sich auf die Auswirkungen der Energiewende, d.h. des Energiesystems und dessen Transformation, auf

- Wasser, Boden und Luft (Kapitel 11.1),
- Rohstoff- und Flächennutzung (Kapitel 11.2),
- Natur und Landschaft (Kapitel 11.3),
- die menschliche Gesundheit (Kapitel 11.4)

fokussieren. Dabei handelt es sich um einen kontinuierlichen Prozess. Im Folgenden wird ein erster Überblick über einzelne Aspekte des künftigen umweltbezogenen Monitorings der Energiewende gegeben.

11.1 Wasser, Boden und Luft

11.2 Rohstoff- und Flächennutzung

Mit der Umstellung des Energiesystems verändern sich der Flächenbedarf und die Art der Flächennutzung. Die Flächenverbräuche durch den Abbau fossiler Energieträger nehmen perspektivisch zwar nicht weiter zu. Hingegen sind der Flächenbedarf und die unterschiedlichen räumlichen Wirkungen erneuerbarer Energien im Vergleich zu konventionellen Energieerzeugungstechniken insgesamt höher. Mit der Umstellung auf erneuerbare Energien kann sich die Struktur der Energieumwandlung und -nutzung zudem von einer kleinen Anzahl zentraler Standorte hin zu einer Vielzahl kleinerer, dezentral angeordneter Standorte verlagern.

Auch die einzelnen Erneuerbare-Energien-Technologien verbrauchen in sehr unterschiedlichem Maße Flächen und wirken sich sehr heterogen auf Natur und Landschaft aus. So wurden laut der Fachagentur für nachwachsende Rohstoffe im Jahr 2016 auf einer Fläche von etwa 1,45 Millionen Hektar (fast 8 Prozent der landwirtschaftlichen Fläche) Pflanzen zur Energienutzung angebaut. Für den Anbau von nachwachsenden Rohstoffen zur Biokraftstoffherstellung

Effiziente Erzeugung und Verteilung erneuerbarer Energien und ein reduzierter Energieverbrauch können zur Reduzierung des Flächenverbrauchs und zur Minderung von Flächenkonkurrenzen und Belastungen der Landschaft beitragen. Zur weiteren Reduzierung des Flächenverbrauchs sind grundsätzlich insbesondere solche Technologien geeignet, die verbrauchsnah sowie auf ohnehin versiegelten Flächen genutzt werden, wie die Gewinnung von Solarenergie auf Dächern und an Fassaden sowie Wärmepumpen oder Erdwärmepumpen.

11.3 Natur und Landschaft

Windenergieanlagen an Land: Eine Optimierung der Auswahl auf die verträglichsten Standorte im Rahmen der jeweiligen Standortplanung, -prüfung und -genehmigung dient der Vermeidung möglicher negativer Auswirkungen auf Tierarten und deren Lebensräume sowie auf das Landschaftsbild und nicht zuletzt der Interessen der Anwohner. Dazu tragen
Windenergieanlagen auf See: Bau und Betrieb dieser Anlagen können Auswirkungen wie Schalleinträge auf marine Säuger haben. Sie können Habitate von Vögeln und Fledermäusen sowie geschützte Biotope beeinträchtigen. Das BMU hat im Jahr 2013 in einem Schallschutzkonzept für die Ausschließliche Wirtschaftszone in der Nordsee ein Konzept entwickelt, nach denen die Bauarbeiten für Windenergieanlagen auf See in kritischen Bereichen so durchgeführt werden müssen, dass Schweinswalen ein ausreichend großer Rückzugsraum bleibt.

Das Kompetenzzentrum Naturschutz und Energiewende (KNE), das im Juli 2016 seine Tätigkeit aufgenommen hat, leistet einen Beitrag zur Konfliktvermeidung beim Ausbau der erneuerbaren Energien. Das KNE trägt zu einer Ver-sachlichung von entsprechenden Debatten und zur Vermeidung von Konflikten vor Ort bei.

11.4 Gesundheitseffekte

Zentrale Maßnahmen im Bereich Umweltverträglichkeit

Deutsches Ressourceneffizienzprogramm II
- Gemeinsame Betrachtung von Materialeffizienz und Energieeffizienz, Umwelt-, Sozial- und Transparenzstandards im Rohstoffsektor international stärken und nachhaltige Lieferketten schaffen
- Ressourcenschonung in die Produktentwicklung einziehen
- Ressourceneffiziente Produktions- und Verarbeitungsprozesse entwickeln und verbreiten
- Zum Umsetzungsstand im Einzelnen siehe Kapitel 16

Erster Stickstoff-Bericht der Bundesregierung
- In ihrem ersten Stickstoff-Bericht vom Mai 2017 stellt die Bundesregierung die Notwendigkeit dar, den Stickstoffeintrag sektorenübergreifend auf ein umwelt- und gesundheitsverträgliches Maß zu reduzieren. Relevante Stickstoffemissionen, deren Höhe durch die Ausgestaltung der Energiewende beeinflusst wird (z.B. Ausbrin- gung von Gärresten), sind Ammoniak-, Lachgas- und Nitratemissionen (Landwirtschaft) und Stickstoffoxidemissionen (Energieerzeugung und Verkehr).
- In Deutschland trägt die Landwirtschaft 63 Prozent zu den jährlichen Gesamtstickstoffemissionen in Höhe von 1,5 Millionen Tonnen Stickstoff bei. Die Energiewirtschaft und Industrie steuern 15 Prozent bei, der Verkehr 13 Prozent; die restlichen 9 Prozent stammen aus Abwasser und Oberflächenablauf (Bundesregierung 2017).

Naturschutzfachliches Monitoring des Ausbaus der erneuerbaren Energien im Strombereich
- Mit dem vom Bundesamt für Naturschutz in Auftrag gegebenen Forschungsvorhaben soll ein naturschutzfaches Monitoring des Ausbaus der erneuerbaren Energien im Strombereich aufgesetzt werden.
- Gleichzeitig werden Instrumente zur Verminderung der Beeinträchtigung von Natur und Landschaft entwickelt.

Bundeseigene BGZ Gesellschaft für Zwischenlagerung mbH
- Mit dem im Juni 2017 in Kraft getretenen „Gesetz zur Neuordnung der Verantwortung in der kerntechnischen Entsorgung" wurde neu geregelt, wer für die Stilllegung und für den Rückbau der Atomkraftwerke sowie für die Entsorgung der radioaktiven Abfälle verantwortlich ist.

Verbote für unkonventionelles Fracking für die Förderung von Erdgas und Erdöl
- Im Februar 2017 sind gesetzliche Regelungen zum Fracking in Kraft getreten. Diese sehen weitebrechende Verbote und Einschränkungen für die Anwendung der frackingtechnologie in Deutschland vor. Sogenanntes unkonventionelles Fracking wird generell verboten. Lediglich zu wissenschaftlichen Zwecken können die Bundesländer bundesweit maximal vier Erprobungsmaßnahmen zulassen, um offene Fragen zu klären.
12 Netzeninfrastruktur

Wo stehen wir?

Der beschlossene Netzausbau muss zügig umgesetzt werden. Ende des ersten Quartals 2018 waren rund 40 Prozent der EnLAG-Vorhaben realisiert. Genehmigt sind dagegen bereits mehr als die Hälfte der Vorhaben. Im September 2017 ist die Thüringer Strombrücke vollständig in Betrieb gegangen.

Die Zuverlässigkeit der Netzeninfrastruktur in Deutschland ist im Hinblick auf Netzstabilität und -qualität nach wie vor auf einem sehr hohen Niveau.

Die Netzentgelte für Haushaltskunden sind im Jahr 2016 um drei Prozent gestiegen. Für bestimmte Industriekunden sind sie hingegen um 2,8 Prozent gesunken.

Was ist neu?

Mit dem EEG 2017 wurden erste Schritte gegangen, Netzausbau und Ausbau der erneuerbaren Energien künftig besser miteinander zu verzahnen.

Um die Kosten für das Netzentgelpassmanagement im Übertragungsnetz zu reduzieren, hat das BMWi im Frühjahr 2017 einen breit angelegten Stakeholder-Prozess angestoßen und gemeinsam mit den Akteuren Maßnahmen erarbeitet, die ergänzend zum Netzausbau die volkswirtschaftlichen Kosten senken und die Auslastung der Stromnetze kurzfristig erhöhen sollen.

Der zwischen CDU, CSU und SPD vereinbarte Koalitionsvertrag unterstreicht die zentrale Bedeutung der Beschleunigung des Netzausbaus und Optimierung der Bestandsnetze für das Gelingen der Energiewende.
12.1 Ausbau der Übertragungsnetze

Um die Akzeptanz dieser sogenannten Stromautobahnen zu erhöhen, hat die Bundesregierung beschlossen, diese im Wesentlichen als Erdkabel und nicht durch oberirdisch verlaufende Leitungen zu bauen. Ergänzend zu den langwierigen Verfahren des Netzausbaus, muss durch eine Optimierung und Verstärkung der Netze kurzfristig dazu beigetragen werden, die Kapazitäten für den Stromtransport zu erhöhen.

Der Ausbau der Übertragungsnetze ist auch für die Verwirklichung des europäischen Energiebinnenmarktes erforderlich. Der europäische Stromhandel erhöht die Effizienz der Stromversorgung und zugleich die Versorgungssicherheit. Indem sich Angebot und Nachfrage über größere Räume ausgleichen, ermöglicht er u. a. eine kosteneffiziente Integration von erneuerbaren Energien. Für einen funktionierenden Strombinnenmarkt sind neben den innerstaatlichen Netzausbau auch ausreichend grenzüberschreitende Netzkapazitäten notwendig (siehe Kapitel 3).

und etwa 2.850 km als Neubaumaßnahmen kategorisiert. BBPlG ergeben, liegt aktuell bei etwa 5.900 km. Im Netzentwicklungsplan umfasst derzeit insgesamt 43 Vorhaben, von denen rund 500 km genehmigt und davon rund 150 km realisiert wurden. Der Ausbau wird vorübergehend dort lokal angepasst, wo sich künftig besser miteinander zu verzahnen. Der Windenergieausbau wird für das Jahr 2021 und 2022, 700 MW in den Jahren 2023 bis 2025 und jährlichen Ausschreibungsvolumens von 500 MW in den Jahren 2026 bis 2028 geplant.

Transparenz und Beteiligung: die Öffentlichkeit beim Netzausbau eng einbinden

12.2 Ausbau der Stromverteilernetze

Eine entscheidende Rolle bei der Modernisierung der Verteilernetze kommt dem Einsatz digitaler Technologien zu. Damit die Verteilernetze die beschriebenen neuen Herausforderungen bewältigen können, sollen sie zu intelligenten Netzen (Smart Grids) fortentwickelt werden. Konventionelle Elektrizitätsnetze werden zu Smart Grids, wenn sie mit Kommunikations-, Steuer- und Regeltechnik sowie IT-Komponenten ausgerüstet werden. Auf diese Weise können die Netze intelligent miteinander sowie mit Stromerzeugung und -verbrauch verknüpft werden. Dazu hat der Bundestag im Juli 2016 das Gesetz zur Digitalisierung der Energie-
12.3 Netzinvestitionen und Netzentgelte

Quelle: BNetza 10/2017
Potenziale bei der Optimierung des Bestandsnetzes heben

12.4 Stabilität und Qualität der Stromnetze

Netzinfrastruktur

Zentrale Maßnahmen im Bereich Netzinfrastuktur

- Netzentgeltmodernisierungsgesetz (NEMoG)
- Novelle Anreizregulierungsverordnung
- Gesetz zur Änderung von Bestimmungen des Energieleistungsbaus
- Weiterentwicklung Monitoring zu deutschen Netzausbauvorhaben
- Weiterentwicklung der Verordnung über Vereinbarungen zu abschaltbaren Lasten
- Strommarktgesetz (siehe Kapitel 9)
- Gesetz zur Digitalisierung der Energiewende (siehe Kapitel 13.2)
13 Integrierte Entwicklung des Energiesystems

Wo stehen wir?

Digitalisierung verbindet die Energiewirtschaft mit moderner Informations- und Kommunikationstechnik. Mit innovativen, kundenfreundlichen Geschäftsmodellen schafft sie neue Potenziale zur Effizienzsteigerung und zur Integration erneuerbarer Energien. Datenschutz und Datensicherheit haben dabei eine hohe Priorität.

Was ist neu?

Das im September 2016 in Kraft getretene Gesetz zur Digitalisierung der Energie- wende (GDEW) setzt das Startsignal für Smart Grid, Smart Meter und Smart Home in Deutschland. Mit diesem Infrastrukturprojekt werden Stromverbraucher und -erzeuger über intelligente Messsysteme in einem „Smart Grid“ vernetzt und können Investitionen in Milliardenhöhe ausgelöst werden.

| Sektorkopplung | Die Potenziale einer effizienten Sektorkopplung und der Digitalisierung für das Gelingen der Energiewende nutzen. |
13.1 Kopplung der Sektoren Strom, Wärme und Verkehr

Erneuerbarer Strom wird der wichtigste Energieträger. Der nach Nutzung der bestehenden Effizienzpotenziale und dem direkten Einsatz erneuerbarer Energien im Wärme- und Verkehrssektor verbleibende Energiebedarf wird zunehmend durch die effiziente Verwendung von erneuerbarem Strom gedeckt (Sektorkopplung). Im Verkehrssektor gelingt dies insbesondere durch die Einführung und Verbreitung direktelektrischer Antriebstechniken auf der Basis einer zunehmend auf erneuerbaren Energien basierenden Stromversorgung. Im Gebäudebereich spielt Strom aus erneuerbaren Energien, z. B. durch die Nutzung von Wärmepumpen, neben anderen erneuerbaren Energien eine immer wichti
gere Rolle bei der Wärmeversorgung. Nachhaltig erzeugte, erneuerbare Brennstoffe (z. B. Biomasse) kommen bei Berücksichtigung der begrenzt verfügbaren nachhaltigen Poten
tiale zum Einsatz, wo Strom technisch oder ökonomisch nicht sinnvoll genutzt werden kann. Dies kann insbeson
dere für den Luft- und Schiffverkehr sowie für Teile der Industrie gelten. Allerdings sind fossile Brennstoffe für Ver
kessel Wärme und Wärme für Verbraucher bisher kostengünstiger als Strom. Um das langfristige Ziel einer nahezu CO₂-freien Energieversorgung zu erreichen, wird es verstärkt auf An
strengungen ankommen, den gesamten Energiebedarf sektorübergreifend weiter zu reduzieren (Prinzip „Efficiency First“) und das Stromsystem noch flexibler zu gestalten. Die Bundesregierung beabsichtigt, die Kopplung der Sektoren Wärme, Verkehr und Industrie voranzubringen und den regulativen Rahmen zu ändern, so dass „grüner Wasserstoff“ und Wasserstoff als Produkt aus industriellen Prozes

Hocheffiziente Wärmepumpen und Elektrofahrzeuge benötigen vergleichsweise wenig Strom und können einen großen Beitrag zur Dekarbonisierung und Effizienzsteigerung im Wärme- und Verkehrssektor leisten. Wie Tabelle 13.1 zeigt, benötigen beide Technologien weniger Strom zur Erzeu
gung der gleichen Menge Wärme oder Antriebsenergie als konventionelle fossile Energieträger oder Technologien, die mehrere Umwandlungsschritte voraussetzen.

gen von knapp 500.000 auf über 960.000. Dies liegt zum einen an der zunehmenden Kostendegression der Anlagen, aber auch an ordnungsrechtlichen Mindestanforderungen an erneuerbare Energien und Energieeffizienz (z. B. Ener
geneffizienz.

Eine integrierte Entwicklung des Energiesystems wird die Kopplung der Sektoren Energiewirtschaft, Verkehr und Gebäude sowie Industrie in Verbindung mit Speichertechnologien (siehe Kapitel 14.1) voranbringen. Stadtwerke und Verteilnetzbetreiber haben hier durch ihre Nähe zu Energieversorgern und Verbrauchern sowie dem öffentlichen

Abbildung 13.3: Elektrifizierungsgrad in der Industrie in Prozent

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Wärmeanwendungen</th>
<th>Kälteanwendung</th>
<th>mechanische Energie</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>98,2</td>
<td>7,9</td>
<td>8,1</td>
</tr>
<tr>
<td>2009</td>
<td>97,8</td>
<td>8,8</td>
<td>7,8</td>
</tr>
<tr>
<td>2010</td>
<td>98,1</td>
<td>7,8</td>
<td>7,8</td>
</tr>
<tr>
<td>2011</td>
<td>97,2</td>
<td>8,0</td>
<td>7,6</td>
</tr>
<tr>
<td>2012</td>
<td>95,7</td>
<td>7,9</td>
<td>8,0</td>
</tr>
<tr>
<td>2013</td>
<td>95,9</td>
<td>8,0</td>
<td>7,8</td>
</tr>
<tr>
<td>2014</td>
<td>95,7</td>
<td>8,0</td>
<td>7,8</td>
</tr>
<tr>
<td>2015</td>
<td>95,7</td>
<td>8,0</td>
<td>7,8</td>
</tr>
<tr>
<td>2016</td>
<td>95,7</td>
<td>8,0</td>
<td>7,8</td>
</tr>
</tbody>
</table>

Quelle: AGEB 11/2017

Zentrale Maßnahmen im Bereich Sektorkopplung

- Umweltbonus Elektromobilität (siehe Kapitel 7)
- Wärmepumpen-Förderung
- Niedertemperaturwärmenetze mit Saisonwärmespeicher
- Förderung von innovativen KWK-Systemen im KWKG
Nahverkehr eine Schlüsselposition. Es gilt, den Rahmen so zu gestalten, dass die verschiedenen Energieinfrastrukturen – einschließlich der bestehenden Gas- und Wärmeinfrastruktur für die Sektorkopplung – koordiniert und kosten-effizient weiterentwickelt werden. Daneben spielen auch flexible Infrastrukturen eine wichtige Rolle.

13.2 Digitalisierung der Energiewende

Abbildung 13.4: Anteil Fernmess- und Fernsteuerbarkeit von EE-Anlagen
in Prozent der installierten Leistung

<table>
<thead>
<tr>
<th>Jahr</th>
<th>nicht regelbar</th>
<th>fernsteuer- und fernmessbar</th>
<th>fernsteuerbar***</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>16,8</td>
<td>74,6</td>
<td>8,7</td>
</tr>
<tr>
<td>2014</td>
<td>15,7</td>
<td>76,0</td>
<td>8,3</td>
</tr>
<tr>
<td>2015</td>
<td>14,9</td>
<td>77,2</td>
<td>6,6</td>
</tr>
<tr>
<td>2016</td>
<td>14,6</td>
<td>78,9</td>
<td>6,6</td>
</tr>
</tbody>
</table>

* nicht regelbar, darunter fallen auch PV-Anlagen, die nach §9 Abs. 2 EEG 2014 eine 70 %-Begrenzung aufweisen
** fernmess- und fernmessbar EE- und KWK-Anlagen gemäß §9 Abs. 1 EEG 2014
*** nur fernsteuerbare Anlagen gemäß §9 Abs. 2 EEG 2014

Quelle: AGEB 11/2017

In Handel und Vertrieb entstehen innovative Geschäftsmodelle durch digitale Infrastrukturen, die einen wichtigen Beitrag zur Integration der erneuerbaren Energien in den Markt leisten. So ist etwa die Fernsteuerbarkeit von Erzeugungsanlagen eine Voraussetzung dafür, dass Erneuerbare-Energien-Anlagen im Rahmen der Direktvermarktung einen Anspruch auf die Zahlung der sogenannten Marktpremie
Das SINTEG-Programm: „Schaufenster intelligente Energie – Digitale Agenda für die Energiewende“

Das BMWi fördert die fünf SINTEG-Schaufenster mit über 200 Millionen Euro. Zusammen mit zusätzlichen privaten Investitionen der beteiligten Unternehmen werden insgesamt über 500 Millionen Euro in die Digitalisierung des Energiesektors investiert.

Das SINTEG-Programm wird durch ein Begleitforschungskonsortium unterstützt, insbesondere zur Erhöhung der Breitenwirksamkeit des Programms, für den Ergebnistransfer und den nationalen und internationalen Austausch bzw. die Vernetzung, zur Unterstützung bei Normungs- und Standardisierungsprozessen und zur Evaluierung.

SINTEG ist Teil des Maßnahmenpakets „Innovative Digitalisierung der Deutschen Wirtschaft“ zur Umsetzung der Digitalen Agenda der Bundesregierung.

Blockchain – Potenzial und Herausforderungen

Abbildung 13.5: Verwendete Zähl- und Messtechniken im Bereich Haushaltskunden in Prozent der Zählpunkte

Quelle: BNetzA 10/2017

Zentrale Maßnahmen im Bereich Digitalisierung der Energiewende

- Gesetz zur Digitalisierung der Energiewende (GDEW)
- Projekt „Digitalisierung der Energiewende: Barometer und Topthemen“
- Roadmap „Standardisierungsstrategie für die sektorübergreifende Digitalisierung nach dem GDEW“
- „Schaufenster intelligente Energie – Digitale Agenda für die Energiewende“ (siehe Kasten)
- Pilotprogramm Einsparzählern (siehe Kapitel 5.4)
- Ausbau der Förderung der Markteinführung des klimageschärfen, smarten „Effizienzhaus Plus“-Gebäudestandards des Bundes, da diese Gebäude der Zukunft eine Zusatzfunktion als „smarter Energiemanager“ übernehmen (Vernetzung und Rückmeldung über Energieströme im/ am Haus, im Quartier)
14 Energieforschung und Innovationen

Wo stehen wir?

Das Energieforschungsprogramm der Bundesregierung legt Schwerpunkte auf erneuerbare Energien, Energieeffizienz und Energiesystemtechnologien (Netze und Speicher).

Was ist neu?

Angesichts der Herausforderung der zunehmenden Integration erneuerbarer Energien in das Energiesystem und der Kopplung der Sektoren Strom, Wärme und Verkehr stehen übergreifende Initiativen wie „Solares Bauen/Energieeffiziente Stadt“, „Energiewende im Verkehr“ und die Kopernikus-Projekte für die Energiewende im Fokus.

| Forschung Innovation | Zukunftswesende Innovationen für den Umbau der Energieversorgung vorantreiben. |
14.1 Forschung und Entwicklung

Forschung, Entwicklung und Demonstration innovativer Energietechnologien sind in erster Linie Aufgaben der Wirtschaft. Öffentliche Forschungsförderung zielt generell darauf ab, neben der Grundlagenforschung die angewandte Forschung, technologische Entwicklungen sowie Innovationsaktivitäten der Wirtschaft, von Forschungseinrichtungen und Hochschulen zu unterstützen.

politik in der Energieforschung und informiert über die geförderten Energietechnologien.

Seit Beginn der Projektförderung im Jahr 1977 (1. Energieforschungsprogramm) hat die Bundesregierung rund 12 Milliarden Euro in die Förderung der nicht-nuklearen Energieforschung investiert. Das neue, zentrale Informationsystem EnArgus bietet einen umfassenden Einblick in die Energieforschungsaktivitäten der Bundesregierung der letzten 40 Jahre.

Der Trend eines konstant hohen Mittelabflusses bei jährlich steigendem Budget unterstreicht die zentrale Bedeutung der Energieforschung für die Umsetzung der Energiewende. Die Energieforschung schafft damit die technologische Grundlage für den Umbau des Energieversorgungssystems und ist ein strategisches Element der Energiepolitik der Bundesregierung.

Die sektorübergreifende Energieforschung ist ein wichtiger Beitrag zur Energiewende. Die Bedeutung der Integration von Strom-, Wärme- und Verkehrssektor (Sektorkopplung)

Transparenz und Beteiligung – Beispiele im Bereich Energieforschung

Forschungsnetzwerke Energie
Um Ergebnisse der Energieforschung direkt zu den Akteuren der Energiewende zu transferieren und um den Dialog zwischen Wissenschaft, Wirtschaft und staatlicher Förderpolitik zu unterstützen, hat das BMWi seit dem Jahr 2015 sieben Forschungsnetzwerke zu wesentlichen Förderschwerpunkten sukzessive ins Leben gerufen:

- Energiewendebauen
- Stromnetze
- Systemanalyse
- Erneuerbare Energien
- Energieeffizienz in Industrie und Gewerbe
- Flexible Energieumwandlung
- Energetische Biomassenutzung

Als Schnittstelle zwischen Forschung, Praxis und Politik tragen die Netzwerke dazu bei, praxisnahe Förderstrategien themenorientiert zu diskutieren und neue Maßnahmen anzuregen. Transparenz und Effizienz werden so in den Fokus der Energieforschung gerückt. Die Energiewende-Plattform Forschung und Innovation (FuPl-Plattform) bündelt und koordiniert die langfristig angelegten Forschungsnetzwerke Energie.

Konsultation zum 7. Energieforschungsprogramm

Forschungsforum Energiewende
14 ENERGIEFORSCHUNG UND INNOVATIONEN

Perspektivisch wird die Bedeutung der Energieforschung noch weiter zunehmen. Der positive Trend setzt sich in Zukunft fort und stärkt die Rolle der Energieforschung im Kontext der Energiepolitik der Bundesregierung. Die mittelfristige Finanzplanung sieht ein Volumen von 1,105 Milliarden Euro für die Projektförderung für das Jahr 2020 vor. Auch im europäischen Rahmen wird sich Deutschland weiter für ein ganzheitliches und energiewendeorientiertes Vorgehen engagieren.

14.2 Innovative Energietechnologien

Erfolgversprechende Forschungsergebnisse sind Ausgangspunkt für neue, kostengünstige und marktfähige Energie-technologien. Beispiele für die zunehmende Verbreitung von innovativen Technologien, die mit höheren Wirkungsgraden, geringeren Kosten oder geringerem Ressourceneinsatz verbunden sind, finden sich in allen Handlungsfeldern der Energiewende, wie im Folgenden gezeigt wird.

Die Prioritäten bei Forschung und Entwicklung verlagern sich zunehmend in Richtung Flexibilisierung von Kraftwerksprozessen. Mit zunehmender Integration erneuerbarer Energien im Strommarkt sind neue Anforderungen entstanden. Durch die Forschungsaktivitäten in diesem Bereich werden die Voraussetzungen geschaffen, dass der deutsche Kraftwerkspark diese Anforderungen in Zukunft besser umsetzen kann.

Zentrale Maßnahmen im Bereich Energieforschung

- Konsultationsprozess zum 7. Energieforschungsprogramm
- Energiewende-Plattform Forschung und Innovation (FuL-Plattform)
- Forschungsnetzwerke Energie
- Forschungsinitiative „Energiewende im Verkehr“
- Förderinitiative „EnEff.Gebäude.2050“
- Förderinitiative „Solares Bauen/Energieeffiziente Stadt“
- Forschungsinitiative „Zukunftsfähige Stromnetze“
- Forschungsinitiative „Energiespeicher“
- Regierungsprogramm „Wasserstoff- und Brennstoffzellentechnologie 2016–2026 – von der Marktbergung zu wettbewerbsfähigen Produkten (NIP 2)“
- Kopernikus-Projekte
- Akademienprojekt „Energiesysteme der Zukunft“
- Forschungsforum Energiewende
- Förderprogramm „Energetische Biomassenutzung“
- Förderprogramm „Nachwachsende Rohstoffe“
- Programmkooperation: Forschungsallianz Energiewende in der AIf
- Forschungsinitiative „Carbon2Chem“
- Forschungscampi „Mobility2Grid“ und „Flexible Elektrische Netze“

Digitale Lösungen ziehen sich durch alle Branchen und Sektoren. Dies gilt insbesondere für den Bereich Strom und Netze (Smart Meter Rollout) sowie Gebäude (Smart Home, netzreaktive Gebäude, siehe Kapitel 13.2). Im Bereich autonomen, vernetzten Fahren ist Deutschland derzeit führend in wesentlichen Technologiefeldern. Mit der Umsetzung der „Strategie automatisiertes und vernetztes Fahren“ schafft die Bundesregierung die Voraussetzungen, um die Wachstums- und Wohlstandschancen der Mobilität der Zukunft zu nutzen. Automatisiertes und vernetztes Fahren wird den Straßenverkehr sicherer machen und durch die schrittweise Optimierung des Verkehrsflosses und die wachsende Marktdurchdringung verkehrsbedingte Emissionen reduzieren.

Zentrale Maßnahmen zur Förderung der Markteinführung innovativer Technologien

- Förderung von stationären Brennstoffzellen-Heizungen im Rahmen des Anreizprogramms Energieeffizienz
- Regierungsprogramm „Wasserstoff- und Brennstoffzellen-technologie 2016–2026 – von der Marktvalidierung zu wettbewerbsfähigen Produkten (NIP 2)“

Weitere Beispiele der Innovationsförderung:
- Anreizprogramm Energieeffizienz (siehe Kapitel 5)
- Strategie automatisiertes und vernetztes Fahren (siehe Kapitel 7)
- Schaufenster Elektromobilität
- Förderprogramm „PV-Batteriespeicher“ (siehe Kapitel 9)
15 Investitionen, Wachstum und Beschäftigung

Wo stehen wir?

Die Energiewende in Deutschland ist Teil einer gesamtwirtschaftlichen Modernisierungsstrategie, die neue Marktpotenziale erschließt und mit kontinuierlichen Investitionen in Milliardenhöhe spürbare Impulse für Wachstum und Beschäftigung setzt. Dabei bieten auch innovative Geschäftsmodelle große Chancen.

Im Jahr 2016 waren die energetische Gebäudesanierung und der Ausbau erneuerbarer Energien, insbesondere Windenergie, weiterhin Schwerpunkte der Investitionstätigkeiten.

Die Beschäftigung in der Energiewirtschaft blieb im Jahr 2016 wie in den Vorjahren auf einem hohen Stand, die Verschiebung in der Beschäftigung hin zu den erneuerbaren Energien setzte sich weiter fort.

Auch die Nachfrage der Energiewirtschaft nach Investitionsgütern sowie die energetische Gebäudesanierung trugen weiterhin wesentlich zur Beschäftigung bei.

Was ist neu?

Im Jahr 2016 wurde eine Reihe von Regelungen beschlossen, die Planbarkeit schaffen und einen stabilen Rahmen für Investitionen in das Energiesystems setzen. Dazu zählen das EEG 2017, das Strommarktgesetz, das Gesetz zur Digitalisierung der Energiewende (GDEW) und die Novelle der Anreizregulierung.

<table>
<thead>
<tr>
<th>Investitionen</th>
<th>Arbeitsplätze in Deutschland erhalten und ausbauen und Grundlagen für dauerhaften Wohlstand und Lebensqualität schaffen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wachstum</td>
<td></td>
</tr>
<tr>
<td>Beschäftigung</td>
<td></td>
</tr>
</tbody>
</table>
15.1 Investitionen

Die Investitionen in die Errichtung von Anlagen zur Nutzung erneuerbarer Energien sind in den Jahren 2016 wieder leicht gestiegen. Sie lagen mit rund 15,2 Milliarden Euro (siehe Abbildung 15.1) über dem Vorjahresniveau, aber unter dem...

15.2 Wachstum

Mit der Energiewende ist das gesamtwirtschaftliche Preis niveau moderat gestiegen. GWS und Prognos (2018) gehen davon aus, dass die Inflation, d.h. die Preise der Lebenshaltung, in Deutschland im Jahr 2015 durch die Maßnahmen zur Energiewende moderat höher ausgefallen sind, als dies ohne die Energiewende der Fall gewesen wäre (seit 2005 im Durchschnitt um 0,1 Prozentpunkte). Diese Entwicklung ist auch vor dem Hintergrund einer insgesamt niedrigen Teuerung in Deutschland zu sehen.

Deutschland deckt derzeit rund zwei Drittel seines Energiebedarfs durch den Import von Energieträgern. Dadurch ist die deutsche Volkswirtschaft in erheblichem Maße den oft schwankenden Weltmarktpreisen ausgesetzt (siehe Kapitel 10). Die Preise für diese fossilen Energieträger sind zwar zuletzt deutlich gesunken und haben teilweise zu Entlas-
tungen der Verbraucher beigetragen. Dennoch bleibt es ein wichtiges Ziel, die Abhängigkeit von einzelnen Lieferquel- len dauerhaft zu senken.

15.3 Beschäftigung

Kapitel 3: EU und Internationales

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Umsetzungsstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>Umsetzungsstand</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| **4. Novelle Gebäudeeffizienz-Richtlinie (EPBD)** | Ziel: Fortschreibung der EPBD, wobei die Kernregelungen beibehalten werden. Inhalt: Die Novelle enthält u. a. folgende Eckpunkte:
- In die EPBD integriert werden soll eine bisher in der EED zu findende Regelung zu langfristigen Renovierungsstrategien.
- Neu implementiert werden soll eine Verpflichtung auf vorbereitende Maßnahmen für den Aufbau einer Infrastruktur für die Elektromobilität im Gebäudesektor.
- Ebenfalls neu implementiert werden sollen Regelungen zum Einstieg in die Gebäudeautomatisierung sowie zu einem freiwilligen Gebäudebewertungsinstrument, dem Intelligenzfähigkeits-indikator. Stand: Die EPBD ist Teil des Pakets „Saubere Energie für alle Europäer“; die Novellierung wurde in erster Lesung am 17.04.18 vom Europäischen Parlament und am 14.05.18 vom Rat beschlossen. |
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Umsetzungsstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>Umsetzungsstand</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>17. ACER-Verordnung</td>
<td>Ziel: Anpassung der Tätigkeit der ACER (europäischer Energieregulierer) an das neue Strommarktdesign
Inhalt: Der Vorschlag der Kommission sieht vor, die Abstimmungsregeln im Regulierungsrat anzupassen (von 2/3-Mehrheitsentscheidung auf einfache Mehrheitsentscheidung) und die Prozesse zur Abstimmung neuer Methoden zu vereinfachen. ACER erhält zusätzliche Kompetenzen, zum Beispiel zur Genehmigung einer Methode für das europäische Monitoring zur Versorgungssicherheit. Zudem wird die Rolle der Arbeitsgruppen in ACER formalisiert und so innerhalb der ACER-Organisation gestärkt.
Stand: Die Verordnung ist Teil des Pakets „Saubere Energie für alle Europäer“. Seit Mitte Juni 2018 liegt eine allgemeine Ausrichtung vor, die Grundlage für die kommenden Trilog-Verhandlungen zwischen Europäischem Rat, Kommission und Parlament sein wird.</td>
</tr>
<tr>
<td>19. Richtlinie zur Änderung der Richtlinie 2009/73/EG über gemeinsame Vorschriften für den Erdgasbinnenmarkt</td>
<td>Ziel: Einheitlicher Rechtsrahmen für Rohrleitungen aus und nach Drittländern zur Verwirklichung eines integrierten Gasmarktes in der EU
Inhalt: Der Anwendungsbereich der Gasrichtlinie und der Gasverordnung wird auf Rohrleitungen aus und nach Drittländern ausgedehnt; dies betrifft Bestimmungen zum Zugang Dritter, zur Entgeltregulierung sowie zur eigentumsrechtlichen Entflechtung und Transparenz.
Stand: Vorschlag der EU-Kommission vom 13.11.17; schnelle Einigung wegen rechtlicher Bedenken verschiedener Mitgliedstaaten (u. a. Deutschland) nicht wahrscheinlich.</td>
</tr>
<tr>
<td>20. Tallinn e-Energy Declaration</td>
<td>Ziel: Stärken digitaler Lösungen im Energiesektor
Inhalt: Die rechtlich nicht bindende Erklärung schlägt verschiedene Maßnahmen vor, um eine digitale Energiestrategie in Europa zu entwickeln, darunter Foren und Stakeholder-Arbeitsgruppen, regionale Pilotprojekte für Testläufe innovativer digitaler Energielösungen, verstärkter Einsatz von nationalen und EU-Fördermitteln für digitale Innovationen im Energiebereich. Offen ist noch, wie die Gesamtstrategie koordiniert und finanziert werden soll.
Stand: Unterzeichnung durch die EU-Kommission und die Mitgliedstaaten im September 2017</td>
</tr>
<tr>
<td>21. Energiediplomatie Aktionsplan</td>
<td>Ziel: Stärkung der externen Dimension der Energieunion durch eine kohärente EU-Energie Außenpolitik
Inhalt: Der Aktionsplan nennt vier prioritäre Handlungsfelder: Diversifizierung von Quellen, Lieferanten und Routen; Ausbau von Energiepartnerschaften und -dialogen; beständige Verbesserung der nuklearen Sicherheit; Gestaltung internationaler Energiearchitektur und multilateraler Initiativen.
Stand/Zahlen: Der Aktionsplan wurde im Juli 2015 beschlossen und gilt auf unbestimmte Zeit. Energie ist seither ein wichtiger Schwerpunkt der Zusammenarbeit der EU mit Nachbarländern. Pläne sehen einen noch stärkeren Austausch der EU mit Drittstaaten im Bereich Energiewende vor, um Wissensaustausch und Technologietransfer zu befördern. In den letzten Jahren wurde die Verzahnung mit der Klimadiplomatie gestärkt.</td>
</tr>
<tr>
<td>Instrument</td>
<td>Umsetzungsstand</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 22. Marktstabilitätsreserve im EU-ETS | Ziel: Überschüsse im EU-ETS abbauen
Stand: Die Marktstabilitätsreserve gilt ab 01.01.19.
Zahlen: Mit der Reform des EU-ETS für die vierte Handelsperiode wurde zudem beschlossen, dass die Menge an Emissionszertifikaten, die die Marktstabilitätsreserve abschöpfen soll, für fünf Jahre jedes Jahr bei 24 % liegen soll (anstatt der bislang vorgesehenen 12 %). |
Zahlen: Die Reform führt zu einer Reduktion um rund 484 Millionen Tonnen CO₂-Aquivalenten zwischen den Jahren 2021 und 2030; das entspricht mehr als der Hälfte der jährlichen Treibhausgasemissionen in Deutschland.
Stand: Im April 2018 in Kraft getreten. |
| 24. Überführung von Backloading-Zertifikaten in die Marktstabilitätsreserve | Ziel: Funktionsfähigkeit des ETS angesichts hoher Überschüsse von Emissionszertifikaten und Preisverfall erhalten
Inhalt: Die Verknüpfung soll über sich annähernde Zertifikatspreise die Wettbewerbsbedingungen für europäische und Schweizer Unternehmen angeleiten.
| 26. Lastenverteilungs-Verordnung | Ziel: Festlegen verbindlicher nationaler Emissionsziele für die EU-Mitgliedstaaten bis zum Jahr 2030 im Non-ETS-Bereich
Stand: Die neue Lastenverteilungs-Verordnung ist im Sommer 2018 in Kraft getreten.
| 27. Strategie für emissionsarme Mobilität | Ziel: Senkung der CO₂-Emissionen im Verkehr
Inhalt: In der Strategie für emissionsarme Mobilität stellt die Europäische Kommission geplante Initiativen für diesen Bereich vor. Die Strategie ist als eines der Instrumente zur Modernisierung der europäischen Wirtschaft und Stärkung des Binnenmarktes zu sehen. Die Strategie betrifft vor allem folgende Bereiche:
- mehr Effizienz im Verkehrssystem durch digitale Technologien, intelligente Preisgestaltung und weitere Förderung des Einsatzes emissionsärmerer Verkehrsträger;
- raschere Einführung emissionsärmerer alternativer Energieträger im Verkehrssektor, u. a. durch fortschrittliche Biokraftstoffe, Strom und synthetische Kraftstoffe aus erneuerbaren Energiequellen;
- Abbau von Hindernissen für die Elektrifizierung des Verkehrs;
- Übergang zu emissionsfreien Fahrzeugen.
Darüber hinaus wird mit dieser Strategie das Engagement Europas für geringere Emissionen aus dem internationalen Luft- und Seeverkehr bekräftigt.
Stand: Die Strategie wurde im Juli 2016 veröffentlicht. |
Inhalt: „Europa in Bewegung“ umfasst:
- eine politische Mitteilung, in der ein langfristiger Plan für eine saubere, sozial gerechte und wettbewerbsfähige Mobilität skizziert wird;
- acht Initiativen, mit denen vor allem die Funktionsweise des Güterkraftverkehrsmarktes sowie die Beschäftigungsbedingungen und der Sozialschutz der Arbeitnehmer verbessert und ein intelligentes System für die Erhebung von Straßenbenutzungsgebühren in Europa eingeführt werden sollen;
- eine Reihe von nichtlegislativen Begleidendumenken mit flankierenden Maßnahmen, die den Wandel hin zu einem nachhaltigen, digitalen und integrierten Mobilitätsystem beschleunigen sollen (Investitionsfinanzierung für Infrastruktur, Forschung und Innovation, kollaborative Plattformen usw.).
Stand: Das Paket wurde im Mai 2017 veröffentlicht. |
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Umsetzungsstand</th>
</tr>
</thead>
</table>
| 29. Regulierung des CO₂-Ausstoßes von Pkw und leichten Nutzfahrzeugen (zweites Mobilitätspaket) | Ziel: Senkung der CO₂-Emissionen im Verkehr
Stand: Die Maßnahme ist Teil des zweiten Mobilitätspakets, das die EU-Kommission im November 2017 veröffentlicht hat.
Zahlen: Verstoßen die Autohersteller gegen die CO₂-Minderung ihrer Neuwagenflotte, so müssen sie pro zusätzlich ausgestoßenem Gramm CO₂ 55 Euro Strafe zahlen. Zudem will die KOM 800 Millionen Euro zusätzlicher Mittel für den Ausbau von Ladestationen für Elektrofahrzeuge bereitstellen. |
Inhalt: Mit dem Plan vereinbarten die G20-Staaten eine verstärkte Zusammenarbeit für die Umsetzung der nationalen Beiträge (NDCs), die Entwicklung langfristiger Klimaschutzstrategien und die Ausrichtung globaler Finanzströme am Pariser-Abkommen. Dazu betonen sie die Bedeu- tung der Schaffung eines geeigneten Investitionsrahmens und bekennen sich zu stärkerer Kooperation und Austausch erfolgreicher Anwendungsbeispiele zu Energieeffizienz und erneuer- baren Energien, zur Verbesserung des Energiezusatzes und des Ausbaus von ineffizienten Subven- tionen für fossile Energieträger. Angeregt wurde auch ein optionales Monitoring, um die Fort- schritte der Energiewende zu überwachen.
Stand: Der Aktionsplan wurde beim Gipfel der G20-Staaten in Hamburg am 07./08.07.17 von 19 der 20 Staaten (mit Ausnahme der USA) als Annex zur Abschlusserklärung beschlossen. |
| 31. 23. Weltklimakonferenz (COP 23) | Ziel/Inhalt: Vorbereitung der Umsetzung der technischen Regelungen des Pariser Klimaabkom- mens; dazu zählen beispielsweise Transparenzregelungen für die NDCs, die Ausgestaltung des Talanoa-Dialogs als Probeläuf für die erste globale Bestandsaufnahme im Jahr 2023, die Neu- vorlage der NDCs 2020 und neue Regelungen für die Marktmechanismen.
Stand: Die Konferenz fand im November 2017 unter der Präsidentschaft Fidschis statt. |
Inhalt/Zahlen: Die Studie zeigt auf, dass eine weitgehende Dekarbonisierung des Energiesys- tems bis zum Jahr 2050 anspruchsvoll, aber technisch möglich und wirtschaftlich machbar ist: Notwendige Mehrinvestitionen bis 2050 betragen 0,3% des globalen BIP. Dabei müssen die Investitionen in Energieeffizienz in allen Sektoren um das Zehnfache der heutigen Niveaus stei- gen. Die Investitionen in die Energieerzeugung würden nicht signifikant steigen, müssten aber massiv v. a. in erneuerbare Energien umgeleitet werden. Aufgezeigt wurde auch, dass eine derart modernisierte Energieversorgung Impulse setzt für Innovationen, nachhaltiges Wirtschafts- wachstum und qualifizierte Beschäftigung.
Stand: Die Studie wurde im März 2017 veröffentlicht. |
Inhalt: Das Arbeitsprogramm für das erste Jahr umfasst die Themen Liberalisierung des Strom- marktes, Energieeffizienz in der Industrie, Integration großer Anteile fluktuierender erneuerbarer Energien und Transparenz im Rohstoffbereich Öl und Gas (ETTI).
| 34. Bilaterale Energiepartnerschaft mit Australien | Ziel/Inhalt: Austausch über Herausforderungen und Chancen insbesondere bei:
- Markt design und kostengünstige Integration von erneuerbaren Energien in den Stromsektor
- Langzeitenergieplanungen inkl. Emissionsvermeidung
- Energieeffizienz in der Industrie
- Speichertechnologien
- Klimamaßnahmen in Inselentwicklungsländern
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Umsetzungsstand</th>
</tr>
</thead>
</table>

Kapitel 4: Erneuerbare Energien

<table>
<thead>
<tr>
<th>Massnahme</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>42. Novelle des Marktanteilprogramms von 2015</td>
<td>siehe Kapitel 5</td>
</tr>
<tr>
<td>43. EU-Regelung zu Biokraftstoffen und indirekten Landnutzungsänderungen</td>
<td>siehe Kapitel 7</td>
</tr>
<tr>
<td>44. KfW-Förderprogramm „Erneuerbare Energien-Speicher“</td>
<td>siehe Kapitel 6</td>
</tr>
<tr>
<td>Instrument</td>
<td>Umsetzungsstand</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>45. Exportinitiative Erneuerbare Energien</td>
<td>siehe Kapitel 3</td>
</tr>
<tr>
<td>46. Gesetz zur Förderung Erneuerbarer Energien im Wärmebereich (EEWärmeG)</td>
<td>siehe Kapitel 6</td>
</tr>
<tr>
<td>47. Marktanreizprogramm für erneuerbare Energien im Wärme-markt (MAP)</td>
<td>siehe Maßnahmen-Monitoring Kapitel 6.4</td>
</tr>
<tr>
<td>48. Niedertemperaturwärmenetze mit Saisonalwärmespeicher („Modell-vorhaben Wärmenetzsysteme 4.0“)</td>
<td>Ziel: Vorbereitung einer breiteren Markteinführung innovativer Wärmenetzsysteme der 4. Generation mit hohen Anteilen erneuerbarer Energien und effizient genutzter Abwärme
Inhalt: Förderung über insgesamt 4 Fördermodule: Förderung von Machbarkeitsstudien mit bis zu 60 %, Förderung der Realisierung eines Wärmenetzes 4.0 mit bis zu 50 % der Vorhabenkosten, ergänzende Förderung von wissenschaftlichen Kooperationen („capacity building“) sowie von Informationsmaßnahmen für potenzielle Anschlussnehmer zur Erreichung einer hohen Anschlussquote bei den Modellvorhaben. Stand: In Kraft seit Juli 2017 Zahlen: Marktreaktion übertrifft Erwartungen deutlich, bis Anfang Juni 2018 bereits 54 Anträge für Machbarkeitsstudien und 3 Anträge für die Realisierung von Wärmenetzen 4.0.</td>
</tr>
</tbody>
</table>

Kapitel 5: Energieverbrauch und Energieeffizienz

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Umsetzungsstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>49. KfW-Energieeffizienzprogramm für Produktionsanlagen und -prozesse</td>
<td>siehe ausführliches Monitoring der zentralen Maßnahmen zur Förderung von Energieeinsparungen in Kapitel 5.4</td>
</tr>
<tr>
<td>50. Initiative Energieeffizienznetzwerke</td>
<td></td>
</tr>
<tr>
<td>51. Energieaudit für Nicht-KMU</td>
<td></td>
</tr>
<tr>
<td>52. Programm zur Förderung hocheffizienter Querschnitts-technologien</td>
<td></td>
</tr>
<tr>
<td>53. Abwärme</td>
<td></td>
</tr>
<tr>
<td>54. Weiterentwicklung der Mittelstandsinitiative Energiewende und Klimaschutz</td>
<td></td>
</tr>
<tr>
<td>55. Förderprogramm klimaschonende Produktionsprozesse</td>
<td></td>
</tr>
<tr>
<td>56. Unterstützung der Marktüberwachung</td>
<td></td>
</tr>
<tr>
<td>57. Nationale Top-Runner-Initiative</td>
<td></td>
</tr>
<tr>
<td>58. EU-Energie-Label-Verordnung</td>
<td></td>
</tr>
<tr>
<td>59. Wettbewerbliche Ausschreibung für Stromeffizienzmaßnahmen (STEP up!)</td>
<td></td>
</tr>
<tr>
<td>60. Pilotprogramm Einsparzähler</td>
<td></td>
</tr>
<tr>
<td>61. Förderrichtlinie Energie-managementsysteme</td>
<td></td>
</tr>
<tr>
<td>Instrument</td>
<td>Umsetzungsstand</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 64. Förderung von Energieeffizienzmanager zur Hebung von Potenzialen z. B. in Gewerbegebieten | Ziel: Förderung des Klimaschutzes in Industrie und Gewerbegebieten
Inhalt: Förderung von Konzepten und Personal für die Umsetzung
Stand: Im Rahmen des Programms „Energetische Stadtanierung – KfW 432“ können Sanierungsmanager für Quartiere gefördert werden, diese Quartiere können zum Teil auch aus Gewerbegebieten bestehen.
Im Rahmen der Kommunalrichtlinie des BMU wird das Klimaschutz-Teilkonzept „Klimaschutz in Industrie und Gewerbegebieten“ und ein Klimaschutzmanagement für die Umsetzung darin identifizierter Maßnahmen gefördert.
Zuständig für die Kommunalrichtlinie ist BMU.
| 65. Exportinitiative Energieeffizienz | siehe Kapitel 3 |
| 66. Plattform Energieeffizienz | Ziel: Kontinuierliche Dialogplattform für die Weiterentwicklung der Energieeffizienzpolitik
| 67. Entwicklung von Kennzahlen und Benchmarks im gewerblichen Bereich | Ziel: Aktuelle und künftige Energieverbräuche erfassen und beides mit anerkannten, objektiven Referenzen (Benchmarks) vergleichen
Inhalt: Es werden FuE-Vorhaben zur Entwicklung von Vergleichskennzahlen, Standards und Benchmarks im Bereich GHD und Industrie gefördert. Datenerhebung und FuE-Bekanntmachung sind für das Jahr 2016 geplant.
Stand: Das Projekt ist abgeschlossen. |
| 68. Studie „Entwicklung des IKT-bedingten Strombedarfs in Deutschland“ | Ziel: Erfassung des Stromverbrauchs und dessen Entwicklung im IKT-Bereich
Stand: Die Studie wurde abgeschlossen. |
| 69. BMEL-Bundesprogramm zur Steigerung der Energieeffizienz in der Landwirtschaft | Ziel/Inhalt: Durch die Bundesanstalt für Landwirtschaft und Ernährung zugelassene Berater sollen einzelbetriebliche Energieeinsparkonzepte erarbeiten.
Stand/Zahlen: Bis Ende Juni 2017 wurden insgesamt 388 Anträge auf Investitionsförderung mit einer Fördersumme in Höhe von rund 14 Millionen Euro nachgeleistet. |

Kapitel 6: Gebäude

<p>| 72. CO₂-Gebäudesanierungsprogramm: Wohngebäude | siehe ausführliches Monitoring der zentralen Maßnahmen zur Förderung von Energieeinsparungen in Kapitel 6.4 |
| 73. CO₂-Gebäudesanierungsprogramm: Nichtwohngebäude |
| 74. Anreizprogramm Energieeffizienz (APEE), Maßnahmen von KfW und BAFA |
| 75. Nationales Effizienzlabel für Heizungsanlagen |
| 76. Förderung der Heizungsanlagentechnik durch hocheffiziente Pumpe und hydraulischen Abgleich |
| 77. Marktanteilprogramm zur Förderung von Maßnahmen zur Nutzung erneuerbarer Energien im Wärmemarkt (MAP) |</p>
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Umsetzungsstand</th>
</tr>
</thead>
</table>
Kapitel 7: Verkehr

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Umsetzungsstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>91. EU-Verordnung zur Verringerung der CO₂-Emissionen bei schweren Nutzfahrzeugen (SNF)</td>
<td>Ziel: Erstmalige CO₂-Flottenzielwerte für schwere Nutzfahrzeuge. Stand: Ein Vorschlag der Kommission wurde im Mai 2018 vorgestellt und wird derzeit verhandelt.</td>
</tr>
<tr>
<td>Instrument</td>
<td>Umsetzungsstand</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>99. Beschaffungsinitiative Elektromobilität</td>
<td>Ziel/Inhalt/Zahlen: Der Anteil der insgesamt neu beschafften bzw. gemieteten Fahrzeuge mit einem Emissionswert unter 50 g (alternativ: elektrische Mindestreichweite von 40 km) soll über die bereits vereinbarten 10% hinaus auf künftig mindestens 20% erhöht werden.</td>
</tr>
<tr>
<td>100. Steuerliche Regelung für die private Nutzung der Elektromobilität</td>
<td>Ziel/Inhalt: Das Gesetz zur steuerlichen Förderung von Elektromobilität im Straßenverkehr vom 07.11.16 wurde am 16.11.16 im Bundesgesetzblatt verkündet und ist am 17.11.16 in Kraft getreten. Im Einkommensteuergesetz werden vom Arbeitgeber gewährte Vorteile für die elektrische Versorgung eines verbundenen Unternehmens und für die zeitweise zur privaten Nutzung überlassene betriebliche Ladevorrichtung steuerbefreit (§ 3 Nummer 46 EStG). Der Arbeitgeber hat auch die Möglichkeit, die Lohnsteuer für geldwerte Vorteile aus der unentgeltlichen oder verbilligten Übereignung einer Ladevorrichtung sowie für Zuschüsse zu den Aufwendungen des Arbeitnehmers für den Erwerb und für die Nutzung einer Ladevorrichtung pauschal mit 25 % zu erheben (§ 40 Absatz 2 Satz 1 Nummer 6 EStG). Stand: Die Neuregelungen gelten vom 01.01.17 bis zum 31.12.20.</td>
</tr>
<tr>
<td>Instrument</td>
<td>Umsetzungsstand</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
Stand: Am 15.12.17 wurde die mittlerweile vierte Förderbekanntmachung im Rahmen des Programms Erneuerbar Mobil veröffentlicht, diesmal als gemeinsame Initiative des Bundeswirtschaftsministeriums (BMWi) und des BMU.
Daneben beteiligt sich das BMU im Rahmen von Erneuerbar Mobil an der Umsetzung des „Sofort­programms Saubere Luft“ der Bundesregierung, indem es die Beschaffung elektrisch betriebener leichter Nutzfahrzeuge und/oder Pkw für den Taxibetrieb, als Mietwagen und für das Carsharing im urbanen Verkehr unterstützt.
Zahlen: Im Rahmen des Programms Erneuerbar Mobil wurden seit 2012 mehr als 70 Projekte mit über 120 Projektpartnern deutschlandweit und einem Fördervolumen von mehr als 230 Millionen Euro gefördert. |
| 105. Runder Tisch Erdgasmobilität | Ziel: Den Dialog zwischen den verschiedenen Marktteilnehmern organisieren und bis Ende des ersten Quartals 2017 zusammen mit dem BMWi ein Maßnahmenpaket erarbeiten, wie das 4-Prozent­Ziel für die Erdgasmobilität erreicht werden könnte.
Inhalt: Als erster Schritt wurde eine Reihe von Fokusregionen in Deutschland identifiziert, in denen die Nutzung von Erdgasfahrzeugen und der Infrastrukturausbau besonders schnell voran­gebracht werden könnten.
Inhalt: Die vier Forschungsschwerpunkte sind Schiffstech­nik, Produktion maritimer Systeme, Schiffsfahrt und Meerelek­tronik. Ein Fokus wird gelegt auf neuartige Produktionstechnik, auf Organisation und auf Vernetzung.
Zahlen: Jährlich werden rund 32 Millionen Euro investiert. Diese werden als rückzahlbare Zuschüsse gewährt, wobei die Eigenbeteiligung in der Regel bei 50% liegt. |
Inhalt: 1. Maßnahmen­entwicklung für die Entwicklung des LNG­Marktes in Deutschland; 2. Bewertung der Umwelt­ und Klima­auswirkungen sowie Beurteilung der Wirtschaftlichkeit auf Basis von Praxis­werten aus den BMWi­Demonstra­tionsprojekten; 3. Erstellung einer Informations­grundlage zu Wirtschaftlichkeits­ und Umsetzungsspek­ten für Nutzer von LNG­Lkw;
Stand: Gründung auf Initiative des BMWi im November 2015. |
I: Beschluss vom Oktober 2015 beinhaltet Ladesteckerstandards und Mindestanforderungen zum Aufbau und Betrieb von öffentlich zugänglichen Ladepunkten für Elektromobile.
II: Auf­augen­findung und Bezahlung an den Ladesäulen sollen vereinheitlicht werden.
III: Ergänzt die bestehende Ladesäulen­verordnung um die EU­Vorgaben für das sogenannte „punktuelle Laden“. Betreiber von öffentlich zugänglichen Ladepunkten haben demnach jeder Nutzerin und jedem Nutzer eines Elektrofahr­zeugs das Laden zu ermöglichen, auch wenn kein langfristiger Stromlieferungsvertrag vorliegt. Dies unterstützt den bedarfsgerechten Ausbau von öffentlich zugänglichen Ladepunkten durch private Investoren und somit den Markthochlauf von Elektromobilen in Deutschland.
Stand: In Kraft seit Juni 2017 |
Neubau von Umschlaganlagen
Verkehrs (KV) durch Aus- und alternative Kraftstoffe (NSR) den Aufbau der Infrastruktur für Öffentlichen Personenverkehr (NRVP 2020) Elektrofahrzeuge in Deutschland

Ziel: Aufbau einer flächendeckenden, öffentlich zugänglichen Ladeinfrastruktur mit bundesweit 15.000 Ladesäulen. Davon 10.000 Normalladestationen und 5.000 Schnellladestationen. Die Förderrichtlinie Ladeinfrastruktur (FRL-LIS) ist Teil des am 18.05.16 durch das Kabinett beschlossenen Marktanteilspakets für die Elektromobilität.

Inhalt: Die Förderrichtlinie gewährt einen Zuschuss (max. 60 %) zu den Investitionskosten für Ladepunkte und zum Netzanschluss. Regelmäßige Förderaufrufe legen die für die jeweilige Förderphase geltenden Bedingungen fest.

Aufbau der Wasserstoff-Infrastruktur (Projekt H2-Mobilität)

Ziel/Inhalt: Aufbau von 400 Wasserstofftankstellen bis zum Jahr 2025 in Deutschland. Der Aufbau der ersten 100 Tankstellen erfolgt unabhängig vom Fahrzeugcholophausl (Henne-Ei-Problem).

Zahlen: Aktuell sind 45 Wasserstofftankstellen in Betrieb.

Förderung des Kombinierten Verkehrs (KV) durch Aus- und Neubau von Umschlaganlagen

Ziel: Die KV-Förderung dient der Verlagerung von Gütertransporten in genormten Ladeeinheiten von der Straße auf die Schiene und die Bundeswasserstraße.

16 MASSNAHMENÜBERSICHT

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Umsetzungsstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>Umsetzungsstand</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>124. Achtes Gesetz zur Änderung des Straßenverkehrs gesetzes (automatisiertes Fahren)</td>
<td>Ziel: Schaffung der rechtlichen Grundlagen für hoch- oder vollautomatisierte Fahrzeugfunktionen Stand: In Kraft seit Juni 2017</td>
</tr>
</tbody>
</table>
127. Ermäßigter Steuersatz für den ÖPNV im Stromsteuergesetz

Inhalt/Stand: Mit der Änderung des Stromsteuergesetzes zum 01.01.18 wurde der Steuersatz auf 11,42 Euro je MWh ermaßigt.

Zahlen: Die Steuermindereinnahmen werden auf 1 Million Euro jährlich geschätzt.

128. Fortführung der ermäßigten Energiesteuersätze für Erdgas und Flüssiggas

Ziel: Die Fortführung der Steuervergünstigung ist ein Anreiz für einen NOx-, freien und CO2-ärmeren öffentlichen und individuellen Verkehr in Innenstädten.

Inhalt/Stand: Die Änderung des Energiesteuergesetzes zum 01.01.18 verlängert die Steuererlassung für Erdgas bis einschließlich 31.12.26, mit degressiver Abschmelzung des Steuersatzes ab 01.01.24. Die Steuererlässeung für Autogas/Flüssiggas wird ab 01.01.19 degressiv abgeschmolzen, bis ab 01.01.23 der reguläre Steuersatz Anwendung findet.

Kapitel 8: Treibhausgasemissionen

129. Aktionsprogramm Klimaschutz 2020 (APK 2020)

Ziel: Durch das Aktionsprogramm soll das Ziel, die Treibhausgasemissionen in Deutschland gegenüber dem Jahr 1990 um mindestens 40 % zu mindern, so schnell wie möglich erreicht werden.

Inhalt: Mehr als 110 Einzelmaßnahmen in allen Wirtschaftsbereichen

130. Klimaschutzplan 2050

Inhalt: Im Klimaschutzplan 2050 sind die Handlungsfelder Energiewirtschaft, Gebäude, Verkehr, Industrie, Landwirtschaft sowie Landnutzung und Forstwirtschaft beschrieben. Darüber hinaus werden übergreifende Ziele und Maßnahmen dargestellt.

Stand: Die Bundesregierung hat im November 2016 den Klimaschutzplan 2050 beschlossen.

131. Aktionsbündnis Klimaschutz

Ziel: Unterstützung der mit dem Aktionsprogramm Klimaschutz beschlossenen Maßnahmen, Erleichterung der Aktivierung von Potenzialen, die derzeit als noch nicht quantifizierbar eingestuft werden, und Identifikation weiterer Handlungsfelder

Inhalt: Bislang wurden die Themenfelder Klimaschutz im Verkehrssektor, in Kommunen, der Landwirtschaft, in Klein- und Mittelständischen Unternehmen, dem Handwerk und der Industrie diskutiert.

Stand: Das Aktionsbündnis tagt halbjährlich und wird nach Beschluss der Bundesregierung zum Klimaschutzplan 2050 auch die Umsetzung des Klimaschutzplans begleiten.

Kapitel 9: Kraftwerke und Versorgungssicherheit

132. Strommarktgeseetz

Inhalt: Weiterentwicklung des Strommarktes zum Strommarkt 2.0, insbesondere:

- Stärkung bestehender Markttechniken
- Reduzierung der Eintrittsbarrieren für Anbieter von Lastmanagement-Maßnahmen
- Effizientere Netzplanung
- Erweiterung des Monitorings der Versorgungssicherheit
- Erhöhung der Transparenz im Strommarkt
- Einführung einer Kapazitätsreserve außerhalb des Strommarktes
- Einrichtung einer Sicherheitsbereitschaft

133. Kapazitätsreserveverordnung

Ziel: Vorhaltung von 2 GW Leistung für unvorhersehbare Ausnahmesituationen

Inhalt: Es handelt sich um eine Form der strategischen Vorratshaltung durch die Übertragungsnetzbetreiber. Damit sind sie in der Lage, im Falle unvorhersehbarer Ausnahmesituationen die Stromversorgung sicherzustellen, indem sie auf die Anlagen in der Kapazitätsreserve zurückgreifen, um zusätzliche Stromemessung zur Verfügung.

Stand: Eine Anpassung der Kapazitätsreserveverordnung im Licht der beihilferechtlichen Genehmigung soll baldmöglichst vorgenommen werden; anschließend erfolgt die erste Ausschreibung.
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Umsetzungsstand</th>
</tr>
</thead>
</table>
Inhalt: Gezielte Unterstützung von CO₂-armen Erzeugung durch Gas-KWK und Flexibilisierung der KWK-Anlagen. Einführung von Ausschreibungen für das Segment zwischen 1 und 50 MW.
Stand: Beschlissen im Dezember 2016, in Kraft getreten im Januar 2017
Zahlen: Verdopplung des Fördervolumens auf 1,5 Milliarden Euro pro Jahr |
Stand: Beschlissen im Juni 2017, in Kraft getreten im August 2017
Zahlen: Jährliche Ausschreibungsmengen (bis 2021):
- KWK-Anlagen 1-50 MW: 200 MW pro Jahr
- Innovative KWK-Systeme: 50 MW pro Jahr |
| 137. Kommission Lagerung hoch radioaktiver Abfallstoffe (Endlagerkommission) | Ziel: Erarbeitung eines Vorschlags für ein faires und transparentes Verfahren zur Lagerung hoch radioaktiver Stoffe
Inhalt: Die Kommission mit Vertretern aus Wissenschaft, Industrie, Umweltverbänden, Religionsgemeinschaften, Gewerkschaften sowie (ohne Stimmrecht) Mitgliedern des Bundestages und der Landesregierungen hat am 05.07.16 ihren Abschlussbericht vorgelegt. Sie spricht sich für ein gestuftes, transparentes, ergebnisoffenes und wissenschaftsbasiertes Verfahren zur Endlagersuche aus und legt Auswahlkriterien für die Suche nach einem bestmöglichen Endlagerstandort vor. |
Inhalt: Konkretisierung des Standortauswahlverfahrens ausgehend von der weißen Landkarte hin zu einem bestmöglichen Endlagerstandort |
| 139. Einrichtung eines Marktstammregisters | Ziel: Aufbau eines zentralen Registern der Energiewirtschaft zur Vereinfachung von behördlichen und privatwirtschaftlichen Meldungen, zur Reduzierung der Zahl der Register und zur Steigerung der Datenqualität und Transparenz
Inhalt: Das Marktstammregister (MaStR) wird den Stammdaten aller Anlagen der leitungsgebundenen Energieversorgung im Strom- und Gasmarkt in Deutschland sowie von Marktteilnehmern in Form einer einheitlichen online-basierten Datenbank zusammenführen.
| 140. Förderprogramm PV-Batteriespeicher | Ziel: Systemdienlichkeit stärken und Kostenreduktionen bei den Speichertechnologien stärker abbilden
Inhalt: Gefördert werden Investitionen in Batteriespeicher, die in Verbindung mit einer Photovoltaikanlage installiert und an die elektrische Netz angeschlossen werden.
Zahlen: Fördersumme von 35 Millionen Euro für die Jahre 2016 bis 2018 |
| 141. Änderung der Gasnetzzugsverordnung | Ziel: System des Gasnetzzuzugs optimieren und auf geänderte energiewirtschaftliche Herausforderungen reagieren
Inhalt: Fernleitungsnetzbetreiber müssen ab dem Jahr 2018 Transportkunden generell untertägige Kapazitäten anbieten. Zudem sollen die beiden bestehenden deutschen Gasmarktgebiete bis spätestens zum 01.04.22 zusammengelegt werden.
Stand: In Kraft getreten im August 2017 |
| 142. SMARD-Strommarktdeaten | Ziel: Transparenz der Darstellung des deutschen Strommarktes
Inhalt: Unter www.smard.de lassen sich die zentralen Strommarktdeaten für Deutschland und teilweise auch für Europa nahezu in Echtzeit abrufen, anschaulich in Grafiken darstellen und herunterladen. Erzeugung, Verbrauch, Großhandelspreise, Im- und Export sowie Daten zu Regelenergie können für unterschiedliche Zeiträume ermittelt und in Grafiken visualisiert werden.
Stand: Die Plattform ist seit Juli 2017 online. |
Kapitel 10: Bezahlbare Energie und faire Wettbewerbsbedingungen

143. Besondere Ausgleichsregelung im EEG

Ziel: Es soll verhindert werden, dass stromkostenintensive Unternehmen und Schienenbahnen durch die Förderung der erneuerbaren Energien in Deutschland gegenüber internationalen Wettbewerbern benachteiligt werden und somit Arbeitsplätze verloren gehen.

Inhalt: Stromkostenintensive Unternehmen aus Branchen, die im internationalen Wettbewerb stehen, können beantragen, eine reduzierte EEG-Umlage zu zahlen.

Zahlen: Im Jahr 2016 waren 2.044 Unternehmen des Produzierenden Gewerbes mit einem Stromverbrauch von 96 TWh in der Besonderen Ausgleichsregelung privilegiert (BAFA 2016).

144. Ermäßigungen bei der KWKG-Umlage

Ziel: Es soll verhindert werden, dass deutsche Unternehmen durch die Förderung der Kraft-Wärme-Kopplung in Deutschland gegenüber internationalen Wettbewerbern benachteiligt werden und dadurch Arbeitsplätze verloren gehen.

Inhalt: Stromverbraucher mit mehr als einer GWh Stromverbrauch und bestimmte, besonders Stromkostenintensive Unternehmen und Schienenbahnen zahlen eine ermäßigte KWKG-Umlage.

145. Entlastungen im Energie- und im Stromsteuergesetz

Ziel: Die teilweise aufgrund EU-Rechts obligatorischen Steuerentlastungen dienen unterschiedlichen Zwecken, bspw. der Sicherung der Wettbewerbsfähigkeit im internationalen Vergleich (Senkung der Energiekosten) oder dem Umweltschutz (z.B. Steuerentlastungen für den ÖPNV oder KWK-Anlagen).

Stand: Nach aktuell verfügbaren Informationen haben 23.797 Unternehmen Energiesteuerentlastungen sowie 46.938 Unternehmen Stromsteuerentlastungen in Anspruch genommen.

146. CO₂-Zertifikatspreis und teilweise freie Zuteilung im EU-Emissionshandelssystem

Siehe Kap. 3

147. Entlastungen bei den Netzsentgelten

Ziel: Das Netzentgeltmodernisierungsgesetz (NEMoG) verringert schrittweise regionale Unterschiede bei den Übertragungsnetzentgelten, schafft mehr Verteilungsgerechtigkeit und senkt die Netzkosten.

Stand: Das NEMoG ist im Juli 2017 in Kraft getreten.

Kapitel 11: Umweltverträglichkeit der Energieversorgung

148. Abstand zwischen Wohnbebauung und Windkraftanlage entsprechend der Technischen Anleitung zum Schutz gegen Lärm (TA-Lärm)

Ziel: Abstandsregelung

Inhalt: Messung und Bewertung tieffrequenter Geräuschimmissionen nach den Nummern 7.3 und A.1.5 der TA-Lärm

149. Erarbeitung einer Allgemeinen Verwaltungsvorschrift zur Minimierung elektrischer und magnetischer Felder

Ziel: Vorsorgliche Minimierung der elektrischen und magnetischen Felder an maßgeblichen Orten entsprechend dem Stand der Technik

Inhalt: Katalog technischer Maßnahmen, deren Umsetzung bei Errichtung und wesentlicher Änderung von Stromnetzleitungen und Nebenanlagen ab einer Nennspannung von 1.000 bzw. 2.000 Volt anhand eines vorgegebenen Schemas geprüft werden muss

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Umsetzungsstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>150. Initiierung eines den Stromnetzausbau begleitenden Forschungsprogramms zum Strahlenschutz</td>
<td>Ziel: Weitere Verbesserung der Risikobewertung und Risikokommunikation in Bezug auf statische und niederfrequente elektrische und magnetische Felder, die beim Transport und bei der Nutzung von Elektrizität entstehen</td>
</tr>
<tr>
<td></td>
<td>Inhalt: Aufklärung eines möglichen Zusammenhangs zwischen niederfrequenten Magnetfeldern und neurodegenerativen Erkrankungen; Bestimmung von Wahrnehmungs- und Wirkungs- schwellen; Ursachenklärung von Leukämien im Kindesalter, Ko-Kanzergenetik von Magnetfelder- exposition; Untersuchung zu einem möglichen Zusammenhang von Magnetfeldexposition und Fehlgeburtenrate; Untersuchungen zum Auftreten, zur Ausbreitung und zur Absorption von Korona-Ionen; Expositionsanalyse, Expositionsbewertung und aktuelle Daten zur Exposition der allgemeinen Bevölkerung; Risikowahrnehmung und Risikokommunikation</td>
</tr>
</tbody>
</table>

Stand/Zahlen: Auftaktveranstaltung des Forschungsprogramms im Juli 2017 mit anschließender Online-Konsultation, insgesamt 35 Projekte, von denen einige Workshops und einzelne Vorhaben bereits realisiert bzw. initiiert wurden

| 151. Deutsches Ressourceneffizienzprogramm II (ProgRess II) | Ziel: Mineralische und fossile Rohstoffe umweltfreundlicher gewinnen, Umwelt-, Sozial- und Transparenzstandards im Rohstoffsektor international stärken und nachhaltige Lieferketten schaffen; Einsatz für die Einhaltung von sozialen und ökologischen Mindestanforderungen bei der Produktion und in den Lieferketten von nach Deutschland importierten Rohstoffen und Gütern sowie die Unterstützung der Unternehmen bei der Stärkung des nachhaltigen Lieferkettenmanagements |
| | **Stand:** Die konkrete Umsetzung steht oft noch am Anfang. Die Wirksamkeit ist daher noch nicht abzuschätzen.

Kapitel 12: Netzentwicklung

| | **Inhalt:** Die Transparenz erhöht werden. Gleichzeitig sollen die Kosten für die Verbraucher möglichst gering gehalten und der Transparenzgrad gesteigert werden. |
| | **Stand:** In Kraft seit Juli 2017

| | **Inhalt:** Für Verteilernetzbetreiber wird ein sogenannter Kapitalkostenabgleich eingeführt. Bei diesem Instrument werden die sinkenden Kapitalkosten von Bestandsanlagen über die Regulierungsperiode hinweg berücksichtigt. Da die Verzinsungsbasis durch sinkende Restwerte abnimmt, vermindert sich auch die Einnahme der Netzbetreiber (geringe Eigenkapitalverzinsung). Neue Veröffentlichungspflichten machen die Entscheidungen der Regulierungsbehörden sowie die Kosten und Erlöse der Netzbetreiber nachvollziehbarer. |
| | **Stand:** In Kraft seit September 2016. Der Kapitalkostenabgleich gilt ab der 3. Regulierungsperiode, d. h. ab 2019 (Strom) bzw. 2018 (Gas).

| 154. Bundesbedarfsplangesetz | Ziel: Gesetzliche Verankerung der energiewirtschaftlichen Notwendigkeit und des vordergründigen Bedarfs der erforderlichen Leitungen |
| | **Stand:** Das Gesetz wurde zuletzt im Dezember 2015 durch das Gesetz zur Änderung von Bestimmungen des Rechts des Energieleitungsbaus geändert (Aufnahme weiterer Vorhaben aus dem Netzentwicklungsplan 2024).

| | **Inhalt:** Verschiedene gesetzliche Änderungen sind geplant, die vor allem für Netzentwicklungsmaßnahmen die Genehmigungsverfahren vereinfachen und beschleunigen sollen. |
| | **Stand:** Referentenentwurf in 2018 geplant. Es kann zum Teil auf Ergebnissen des dena/BET-Stakeholderprozesses zur besseren Auslastung des Stromnetzes sowie der in der Folge eingestellten Arbeitsgruppe zur Vereinfachung und Beschleunigung von Genehmigungsverfahren aufgebaut werden.

| | **Stand:** Das Gesetz wurde bereits im Jahr 2009 von Bundestag und Bundesrat verabschiedet und zuletzt im Dezember 2015 durch das Gesetz zur Änderung von Bestimmungen des Rechts des Energieleitungsausbau geändert (Erweiterung Erdkabel-Piloten).

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Umsetzungsstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>160. Strommarktgesetz</td>
<td>siehe Nr. 132</td>
</tr>
<tr>
<td>161. Gesetz zur Digitalisierung der Energiewende</td>
<td>siehe Nr. 168</td>
</tr>
</tbody>
</table>

Kapitel 13: Integrierte Entwicklung des Energiesystems

165. Umweltbonus Elektromobilität	siehe Kapitel 7
166. Niedertemperaturwärmenetze mit Saisonwärmespeicher („Modellvorhaben Wärmennetzsysteme 4.0“)	siehe Nr. 48
167. Förderung von innovativen KWK-Systemen im KWKG	siehe Nr. 135 („KWK-Ausschreibung VO“)
Kapitel 14: Energieforschung und Innovationen

168. Gesetz zur Digitalisierung der Energiewende

Ziel: Schaffung der technischen Voraussetzungen für Maßnahmen des Last- und Erzeugungsmanagements zur Schaffung von mehr Flexibilität im Stromnetz

Inhalt: Einführung intelligenter Messsysteme: Smart Grid, Smart Meter, Smart Home. Diese sollen als sichere Kommunikationsplattform dienen, um das Versorgungssystem stärker zu vernetzen.

Stand: Im September 2016 in Kraft getreten

169. Verordnung zur Schaffung eines rechtlichen Rahmens zur Sammlung von Erfahrungen im Förderprogramm „Schaufenster intelligente Energie – Digitale Agenda für die Energiewende“ (SINTEG-V)

Ziel: Massentaugliche Lösungen für technische, wirtschaftliche und regulatorische Herausforderungen der Energiesversorgung der Zukunft

Inhalt: Schwerpunkt ist die Digitalisierung des Energiebereichs. Die SINTEG-Verordnung hat dazu umfangreiche Erleichterungen und Möglichkeiten für Teilnehmer an dem Programm geschaffen.

Stand: In Kraft seit 21.06.17

170. Pilotprogramm Einsparzähler

Ziel: siehe Kapitel 5

171. Konsultationsprozess zum 7. Energieforschungsprogramm der Bundesregierung

Ziel: Beitrag zur Umsetzung der Energiewende

Inhalt/Stand: In den Jahren 2016/2017 wurde mit einem Konsultationsprozess sowie durch systemanalytische Untersuchungen im Rahmen strategischer Leitprojekte ein neues Energieforschungsprogramm vorbereitet (dokumentiert unter www.energieforschung.de).

Zahlen: In den Jahren 2013 bis 2016 wurden insgesamt 3,6 Milliarden Euro für die Förderung von Forschung und Entwicklung bereitgestellt. Allein 2016 wurden dafür 876 Millionen Euro ausgegeben.

172. Horizont 2020/Rahmenprogramm für Forschung und Innovation

Ziel: Stärkung der Wettbewerbsfähigkeit Europas

Stand: Im Jahr 2014 startete das europäische Rahmenprogramm für Forschung und Innovation „Horizont 2020“.

Zahlen: Für die Förderperiode 2014 bis 2020 sind rund 5,9 Milliarden Euro für „sichere, saubere und effiziente Energie“ in der nicht-nuklearen Energieforschung vorgesehen.

173. Energiewende-Plattform Forschung und Innovation (FuL-Plattform)

Ziel: Austausch und Dialog mit Vertretern aus Politik, Wirtschaft und Wissenschaft zur Weiterentwicklung der Energieforschung sowie Beschleunigung des Transfers von Ergebnissen der Energieforschung in die Praxis

Inhalt: Diskutiert werden aktuelle Entwicklungen der Energieforschung, insbesondere neue Formate und Inhalte der Forschungsförderung. Kurzfristige Fragestellungen werden in flexiblen und zeitlich begrenzten Ad-hoc-Arbeitsgruppen beraten. Zudem bündelt und koordiniert die FuL-Plattform die Forschungsnetzwerke Energie (siehe Nr. 174).

Stand: Seit dem Frühjahr 2015 finden zweimal pro Jahr Plenumssitzungen der FuL-Plattform statt. Ende 2016 wurde auf der FuL-Plattform der Konsultationsprozess zum neuen Energieforschungsprogramm eingeleitet. Anstelle der Frühjahrsitzung fand am 02.05.17 ein Festakt zum 40-jährigen Jubiläum des Energieforschungsprogramms der Bundesregierung statt, mit anschließender Fachkonferenz zur Zukunft der Energieforschung in Deutschland. Im November 2017 wurden Expertenempfehlungen aus den Forschungsnetzwerken als Beitrag zum Konsultationsprozess für das neue Energieforschungsprogramm überreicht.

174. Forschungsnetzwerke Energie

175. Forschungsforum Energiewende

Ziel: Hochrangige Akteure aus Ländern, Wissenschaft, Wirtschaft und Zivilgesellschaft treffen sich seit dem Jahr 2013, um die effektive Koordinierung und langfristige Ausrichtung der Energieforschung voranzutreiben

Inhalt: Es werden forschungspolitische Schlussfolgerungen mit Blick auf Strukturen, Instrumente und Themen in der Zukunft entwickelt.

176. Förderinitiative „Kopernikus-Projekte für die Energiewende“

Ziel: Die vier Kopernikus-Projekte sollen in vier Schlüsselbereichen der Energiewende den Brückenschlag von der Grundlagenforschung zur Anwendung schaffen. In der ersten Förderphase soll die Basis für ein technologisch exzellentes und wirtschaftlich wettbewerbsfähiges Energiesystem geschaffen werden, das zugleich die größtmögliche Akzeptanz in der Gesellschaft findet.

Inhalt: Jedes der vier Vorhaben widmet sich einer Kernfrage der Energiewende: Stromnetze bei hohen Anteilen erneuerbarer Energien (ENSURE), Speicherung und Umwandlung von Erneuerbaren-Strom (P2X), Neuausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung und Sektorkopplung (SynErgie), Systemintegration (ENavi).

Stand: Die vier Kopernikus-Projekte ENSURE, P2X, SynErgie und ENavi mit rd. 260 Projektpartnern haben 2016 die Arbeit aufgenommen. Die erste Förderphase läuft bis 2019.

Zahlen: Die vri. Fördersumme beträgt mehr als 120 Millionen Euro.
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Umsetzungsstand</th>
</tr>
</thead>
</table>

Massnahmenübersicht
Soweit in der Übersicht Maßnahmen beschrieben werden, die auch Maßnahmen des Aktionsprogramms Klimaschutz 2020 sind, werden deren aktuelle Umsetzungsstände in den jährlichen Klimaschutzberichten der Bundesregierung detailliert dargestellt.

Die Maßnahmen werden im Rahmen der geltenden Haushalts- und Finanzplanungsansätze der Ressorts (einschließlich Stellen und Planstellen) unter Vorbehalt der Verfügbarkeit der notwendigen Haushaltsmittel umgesetzt.
Quellen- und Literaturverzeichnis

BMVI (2013): Mobilitäts- und Kraftstoffsstrategie (MKS), Bundesministerium für Verkehr und Digitale Infrastruktur.

BNetzA, BKartA (2017): Monitoringbericht 2017. Monitoringbericht gemäß § 63 Abs. 3 i. V. m. § 35 EnWG und § 48 Abs. 3 i. V. m. § 53 Abs. 3 GWB, Bundesnetzagentur, Bundeskartellamt, Bonn, Dezember 2017.

DLR, ifeu, LBST, DBFZ (2016b): Potenziale des Hybrid-Oberleitungsbusses als effiziente Möglichkeit für die Nutzung erneuerbarer Energien im ÖPNV, Studie im Auftrag des BMVI.

DLR, ifeu, LBST, DBFZ (2016c): Verkehrsverlagerungspotenzial auf den Schienengüterverkehr in Deutschland, Studie im Auftrag des BMVI.

DLR, ifeu, LBST, DBFZ (2016d): Verkehrsverlagerungspotenzial auf die Schienenfahrzeuge in Deutschland unter Beachtung infrastruktureller Restriktionen, Studie im Auftrag des BMVI.
DLR, ifeu, LBST, DBFZ (2016e): Alltagsmobilität: Verlagerungspotenziale auf nicht motorisierte und öffentliche Verkehrsmittel im Personenverkehr, Studie im Auftrag des BMVI.

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher oder Englischer Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Auswärtiges Amt</td>
</tr>
<tr>
<td>AGEB</td>
<td>Arbeitsgemeinschaft Energiebilanzen e.V.</td>
</tr>
<tr>
<td>AGEEE-Stat</td>
<td>Arbeitsgruppe Erneuerbare Energien-Statistik</td>
</tr>
<tr>
<td>AiF</td>
<td>Arbeitsgemeinschaft industrieller Forschungsvereinigungen</td>
</tr>
<tr>
<td>APKS</td>
<td>Aktionsprogramm Klimaschutz</td>
</tr>
<tr>
<td>APEE</td>
<td>Anreizprogramm Energieeffizienz</td>
</tr>
<tr>
<td>AVF</td>
<td>Automatisiertes und vernetztes Fahren</td>
</tr>
<tr>
<td>BAFA</td>
<td>Bundesamt für Wirtschaft und Ausfuhrkontrolle</td>
</tr>
<tr>
<td>BBPIG</td>
<td>Bundesbedarfsplangesetz</td>
</tr>
<tr>
<td>BET</td>
<td>Büro für Energiewirtschaft und technische Planung GmbH</td>
</tr>
<tr>
<td>BImSchG</td>
<td>Bundesimmmissionsschutzgesetz</td>
</tr>
<tr>
<td>BIP</td>
<td>Bruttoinlandsprodukt</td>
</tr>
<tr>
<td>BLE</td>
<td>Bundesanstalt für Landwirtschaft und Ernährung</td>
</tr>
<tr>
<td>BMBF</td>
<td>Bundesministerium für Bildung und Forschung</td>
</tr>
<tr>
<td>BMF</td>
<td>Bundesministerium für Ernährung und Landwirtschaft</td>
</tr>
<tr>
<td>BMU</td>
<td>Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit</td>
</tr>
<tr>
<td>BMWi</td>
<td>Bundesministerium für Wirtschaft und Energie</td>
</tr>
<tr>
<td>BMZ</td>
<td>Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung</td>
</tr>
<tr>
<td>BNetzA</td>
<td>Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen</td>
</tr>
<tr>
<td>BSI</td>
<td>Bundesamt für Sicherheit in der Informationstechnik</td>
</tr>
<tr>
<td>BVWP</td>
<td>Bundesverkehrswegeplan</td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanism</td>
</tr>
<tr>
<td>CEER</td>
<td>Council of European Energy Regulators</td>
</tr>
<tr>
<td>CNG</td>
<td>Compressed natural gas, komprimiertes Erdgas</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methan</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlendioxid</td>
</tr>
<tr>
<td>CO₂-Aq.</td>
<td>Kohlendioxid-Aquivalenten</td>
</tr>
<tr>
<td>COP21</td>
<td>21. Konferenz der Vertragsstaaten des Klimarahmenübereinkommens</td>
</tr>
<tr>
<td>ct</td>
<td>Cent</td>
</tr>
<tr>
<td>dena</td>
<td>Deutsche Energieagentur</td>
</tr>
<tr>
<td>DIW</td>
<td>Deutsches Institut für Wirtschaftsforschung</td>
</tr>
<tr>
<td>DLR</td>
<td>Deutsches Zentrum für Luft- und Raumfahrt</td>
</tr>
<tr>
<td>DPMA</td>
<td>Deutsches Patent- und Markenamt</td>
</tr>
<tr>
<td>EDL-G</td>
<td>Gesetz über Energiedienstleistungen und andere Energieeffizienzmaßnahmen</td>
</tr>
<tr>
<td>EE</td>
<td>Erneuerbare Energien</td>
</tr>
<tr>
<td>EEA</td>
<td>European Environment Agency, Europäische Umweltagentur</td>
</tr>
<tr>
<td>EED</td>
<td>Energieeffizienzrichtlinie</td>
</tr>
<tr>
<td>EEG</td>
<td>Erneuerbare-Energien-Gesetz</td>
</tr>
<tr>
<td>EEWärmeG</td>
<td>Erneuerbare-Energien-Wärme-Gesetz</td>
</tr>
<tr>
<td>EEX</td>
<td>European Energy Exchange</td>
</tr>
<tr>
<td>EKF</td>
<td>Energie- und Klimafonds</td>
</tr>
<tr>
<td>EnEG</td>
<td>Energieeinsparverordnung</td>
</tr>
<tr>
<td>EnEV</td>
<td>Energieeinsparverordnung</td>
</tr>
<tr>
<td>EnergieStG</td>
<td>Energiesteuergesetz</td>
</tr>
<tr>
<td>EnLAG</td>
<td>Energieleistungsausbaugesetz</td>
</tr>
<tr>
<td>EnStatG</td>
<td>Energiestatistikgesetz</td>
</tr>
<tr>
<td>EnSCH</td>
<td>Energetischer Sanierungsfahrplan Bundiesliegenschaften</td>
</tr>
<tr>
<td>ESD</td>
<td>Effort Sharing Decision, EU-Lastenteilungsentscheidung</td>
</tr>
<tr>
<td>ESG</td>
<td>Energieeffizienzstrategie Gebäude</td>
</tr>
<tr>
<td>ETS</td>
<td>Emissions Trading System, Emissionshandelsystem</td>
</tr>
<tr>
<td>EU</td>
<td>Europäische Union</td>
</tr>
<tr>
<td>EWI</td>
<td>Energiewirtschaftliches Institut, Universität Köln</td>
</tr>
<tr>
<td>Fh ISI</td>
<td>Fraunhofer-Institut für System- und Innovationsforschung</td>
</tr>
<tr>
<td>FuE/F&E</td>
<td>Forschung und Entwicklung</td>
</tr>
<tr>
<td>GHD</td>
<td>Gewerbe, Handel, Dienstleistungen</td>
</tr>
<tr>
<td>GVFG</td>
<td>Gemeindeverkehrsfinanzierungsgesetz</td>
</tr>
<tr>
<td>GWS</td>
<td>Gesellschaft für wirtschaftliche Strukturforschung</td>
</tr>
<tr>
<td>HZO</td>
<td>Programm zur Förderung der Heizungsoptimierung durch hocheffiziente Pumpen und hydraulischen Abgleich</td>
</tr>
<tr>
<td>IAEW</td>
<td>Institut für Elektrische Anlagen und Energiewirtschaft, RWTH Aachen</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency, Internationale Energieagentur</td>
</tr>
<tr>
<td>IFAM</td>
<td>Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>ifeu</td>
<td>Institut für Energie- und Umweltforschung Heidelberg</td>
</tr>
<tr>
<td>IKT</td>
<td>Informations- und Kommunikationstechnik</td>
</tr>
<tr>
<td>IRENA</td>
<td>Internationale Agentur für erneuerbare Energien</td>
</tr>
<tr>
<td>iSFP</td>
<td>individueller Sanierungsfahrplan</td>
</tr>
<tr>
<td>ITD</td>
<td>Institut für Transportation Design</td>
</tr>
<tr>
<td>JI</td>
<td>Joint Implementation</td>
</tr>
<tr>
<td>KFK</td>
<td>Kommission zur Überprüfung der Finanzierung des Kernenergieausstiegs</td>
</tr>
<tr>
<td>KfW</td>
<td>Kreditanstalt für den Wiederaufbau</td>
</tr>
<tr>
<td>km</td>
<td>Kilometer</td>
</tr>
<tr>
<td>KMU</td>
<td>kleine und mittlere Unternehmen</td>
</tr>
<tr>
<td>KOM</td>
<td>Europäische Kommission</td>
</tr>
<tr>
<td>KSB</td>
<td>Klimaschutzausschuss</td>
</tr>
<tr>
<td>KSP2050</td>
<td>Klimaschutzplan 2050</td>
</tr>
<tr>
<td>KV</td>
<td>Kombiniert Verkehr</td>
</tr>
<tr>
<td>kW</td>
<td>Kilowatt</td>
</tr>
<tr>
<td>KW</td>
<td>Kraftwerk</td>
</tr>
<tr>
<td>KWK</td>
<td>Kraft-Wärme-Kopplung</td>
</tr>
<tr>
<td>KWKG</td>
<td>Kraft-Wärme-Kopplungsgesetz</td>
</tr>
<tr>
<td>LEK</td>
<td>Liegenschaftskonzepte</td>
</tr>
<tr>
<td>Lkw</td>
<td>Lastkraftwagen</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquefied Natural Gas; Flüssigerdampfgas</td>
</tr>
<tr>
<td>LULUCF</td>
<td>Land-Use, Land-Use Change and Forestry</td>
</tr>
<tr>
<td>MAP</td>
<td>Marktwachstumprogramm</td>
</tr>
<tr>
<td>MMS</td>
<td>Mit-Maßnahmen-Szenario</td>
</tr>
<tr>
<td>Mrd.</td>
<td>Milliarden</td>
</tr>
<tr>
<td>Mio.</td>
<td>Millionen</td>
</tr>
<tr>
<td>MKS</td>
<td>Mobilitäts- und Kraftstoffstrategie</td>
</tr>
<tr>
<td>MSR</td>
<td>Marktstabilitätsreserve</td>
</tr>
<tr>
<td>MWMS</td>
<td>Mit-Weiteren-Maßnahmen-Szenario</td>
</tr>
<tr>
<td>NAPE</td>
<td>Nationaler Aktionsplan Energieeffizienz</td>
</tr>
<tr>
<td>NEP</td>
<td>Netzentwicklungsplan</td>
</tr>
<tr>
<td>NEMoG</td>
<td>Netzstabilisierungsgesetz</td>
</tr>
<tr>
<td>NIP</td>
<td>Nationales Innovationsprogramm Wasserstoff- und Brennstoffzellentechnologie</td>
</tr>
<tr>
<td>NKI</td>
<td>Nationale Klimaschutzinitiative</td>
</tr>
<tr>
<td>NPE</td>
<td>Nationale Plattform Elektromobilität</td>
</tr>
<tr>
<td>NRVP</td>
<td>Nationaler Radverkehrsgesetz</td>
</tr>
<tr>
<td>ÖPV</td>
<td>Öffentlicher Personenverkehr</td>
</tr>
<tr>
<td>ÖPNV</td>
<td>Öffentlicher Personennahverkehr</td>
</tr>
<tr>
<td>PJ</td>
<td>Petajoule</td>
</tr>
<tr>
<td>Pkm</td>
<td>Personenkilometer</td>
</tr>
<tr>
<td>Pkw</td>
<td>Personenkraftwagen</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaik</td>
</tr>
<tr>
<td>RL</td>
<td>Richtlinie</td>
</tr>
<tr>
<td>SAIDI</td>
<td>System Average Interruption Duration Index</td>
</tr>
<tr>
<td>SINTEG</td>
<td>Schaufenstern intelligente Energie – Digitale Agenda für die Energiewende</td>
</tr>
<tr>
<td>SNF</td>
<td>Schwere Nutzfahrzeuge</td>
</tr>
<tr>
<td>StBA</td>
<td>Statistisches Bundesamt</td>
</tr>
<tr>
<td>StVO</td>
<td>Straßenverkehrsordnung</td>
</tr>
<tr>
<td>t</td>
<td>Tonnen</td>
</tr>
<tr>
<td>tkm</td>
<td>Tonnenkilometer</td>
</tr>
<tr>
<td>TCP</td>
<td>Technology Collaboration Programme der IEA</td>
</tr>
<tr>
<td>THG</td>
<td>Treibhausgas</td>
</tr>
<tr>
<td>TWh</td>
<td>Terawattstunden</td>
</tr>
<tr>
<td>UBA</td>
<td>Umweltbundesamt</td>
</tr>
<tr>
<td>ÜNB</td>
<td>Übertragungsbetrieb</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>UN Framework Convention on Climate Change/VN-Klimarahmenkonvention</td>
</tr>
<tr>
<td>VwV</td>
<td>Verwaltungsvorschrift</td>
</tr>
<tr>
<td>WLTP</td>
<td>World Harmonised Light Vehicle Test Procedure, Weltweites Prüfverfahren</td>
</tr>
<tr>
<td>ZSW</td>
<td>Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg</td>
</tr>
</tbody>
</table>